Lecture 8

Compression beyond iid data

EE 274: Data Compression - Lecture 8
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Recap - entropy coders

e Huffman Coding
o very fast

o optimal symbol coder

o achieves entropy when working with larger blocks - exponential complexity
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Recap - entropy coders

e Arithmetic Coding
o achieves entropy efficiently by treating entire input as a block

o division operations are expensive

o easily extends to complex and adaptive probability models
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Recap - entropy coders

o ANS (Asymmetric Numeral Systems)
o achieves entropy efficiently by treating entire input as a block

o small compression overhead over arithmetic coding
o two variants: rANS and tANS
o faster than arithmetic coding

o can modify base algorithm to use modern instructions like SIMD
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Recap - entropy coders

e Further reading on entropy coders, particularly ANS
o Kedar's lecture notes
o Paper by inventor (Jarek Duda): "Asymmetric numeral systems: entropy coding
combining speed of Huffman coding with compression rate of arithmetic coding"

O

Yann Collet's blog - creator of FSE (tANS), LZ4 and zstd compression libraries

O

Charles Bloom's blog

(©)

Fabian Giesen's blog and paper on rANS wit

O

https://encode.su/forums/2-Data-Compression - compression forum
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https://stanforddatacompressionclass.github.io/notes/lossless_iid/ans.html
https://arxiv.org/abs/1311.2540
https://fastcompression.blogspot.com/2013/12/finite-state-entropy-new-breed-of.html
https://cbloomrants.blogspot.com/2014/02/02-18-14-understanding-ans-conclusion.html
https://fgiesen.wordpress.com/2015/12/21/rans-in-practice/
https://arxiv.org/abs/1311.2540
https://encode.su/forums/2-Data-Compression

Recap - entropy coders

Codec
Huffman coding (1950s)
Arithmetic coding (1970s)
rANS (2010s)
tANS (2010s)

Source: Charles Bloom's blog
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Encode speed
252 Mb/s

120 Mb/s

76 Mb/s

163 Mb/s

Decode speed
300 Mb/s

69 Mb/s

140 Mb/s

284 Mb/s

compression
1.66
1.24
1.24
1.25


http://cbloomrants.blogspot.com/2014/02/02-01-14-understanding-ans-3.html
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Recap - entropy coders

o All of these entropy coders are used in practice due to their unique strengths (and
sometimes legacy reasons)

o We will keep revisiting these as components of various compression methods
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Quiz - rANS recap X /500

rans_encode_step: x_next = (x//freqls])*M + cumul[s] + x%freqls]
rans_decode_step:

# Step I: find block_id, slot

block _id = x//M

slot = x%M

X x-F%ﬁ\
# Step II: Find symbol s

s = find_bin(cumul_array, slot)

# Step III: retrieve x_prev
x_prev = block_idxfreql[s] + slot - cumull[s]
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Q1 rANS encoding

Say X = {0, 1, 2} be our symbols with probabilities {3/8, 3 /8, 2/8} respectively. You
want to encode stream of symbols 2,0,1,0 using rANS.

X

1. What's the state value ( x ) in rANS after symbol 2 ? \./LB
. . \—6/ )7\&4'0"'6_{,'2’

2. What's the state value ( x ) in rANS after encoding symbols 2,0 ? 3_ 16 0

3. What's the final state value ( x ) at the end of encoding stream 2,0,1,0 ? ) IH
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Quiz - Q2 rANS decoding

Say X = {0, 1, 2} be our symbols with probabilities {3/8, 3 /8, 2/8} respectively. Now
your decoder knows that the number of symbols are 4 and the final state your decoder
receivedis 117 .

1. What is the value of block_id after runningthe decode_block for first time?

2.What is the value of slot afterrunningthe decode_block for first time?

3. What is the first decoded symbol? Note that this corresponds to the last encoded
symbol since rANS decoding proceeds in reverse.

4. What is the updated state value ( x ) after first step?
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— \lrans_decode_step:

# Step I: find block_id, slat

block_id = x//M — \\\ /. CX; Y
slot = x%M — H:’"/\.'é?/%s 1

# Step II: Find symbol s

s = find_bin(cumul_array, slot)
—

# Step III: retrieve x_prev
x_prev = block_id*freqls] + slot — cumul[s]




Quiz - Q3 When to use ANS?

In which of the following scenarios would you consider using ANS as opposed to Huffman
or Arithmetic coding? Select all that apply.

O Your application requires the best compression ratio and you are willing to sacrifice

encoding/decoding speeds. Aﬂ thme ’EC,
O Your application requires extremely fast encoding/decoding and you are willing to
sacrifice compression ratio. ‘Hu“zman

O Your application requires adaptive decoding (i.e., the encoder and decoder need to build
a model as they go through the data). Pri H‘W\e‘t\&

\z’%u care about achieving close-to-optimal compression but also want good speed.
& You are working with a modern processor and want to exploit parallel processing to get
higher speeds, while still achieving close-to-optimal compression. CS\MD)
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$ cat sherlock.txt

In mere size and strength it was a terrible creature which was
lying stretched before us. It was not a pure bloodhound and it
was not a pure mastiff; but it appeared to be a combination of
the two—gaunt, savage, and as large as a small lioness. Even now
in the stillness of death, the huge jaws seemed to be dripping
with a bluish flame and the small, deep-set, cruel eyes were
ringed with fire. I placed my hand upon the glowing muzzle, and
as I held them up my own fingers smouldered and gleamed in the
darkness.

“Phosphorus,” I said.

“A cunning preparation of it,” said Holmes, sniffing at the dead

Let's try and compress this 387 KB book.
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>>> from core.data_block import DataBlock

>>>

>>> with open("sherlock.txt") as f:
>>> data = f.read()

>>>

>>> print(DataBlock(data).get_entropy()*len(data)/8, "bytes")
199833 bytes

$ gzip < sherlock.txt | wc —c
134718

$ bzip2 < sherlock.txt | wc —c
99679
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What's up? What are we missing here? Any suggestions?
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1. Datais not iid.

2. Maybe the entire file doesn't have the same distribution (think concatenating an
English novel with a Hindi novel).
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In the next few lectures, we will discuss methods to compress real-life data, attempting to
handle non-iid data whose distribution we do not know a priori.
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Beyond iid data

o text

images

video

tables

basically anything in real life
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Outline

e Lecture 8 (today): non-iid probability distributions, entropy rate, Markov sources

o Lecture 9: context-based arithmetic coding, introduction to LZ77 universal
compression

e Lecture 10: lossless compression in practice
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Probability recap

Recallfor U™ = (Uy,...,Uy):
for iid
pU") = ILL, P(U;)

in general

P(U™) =2, P(U;|UY) = I, P(U;|Uy, - .., Ui_y)
P[U\, UL\ - ‘70)\3 PCU-;,' \}\)
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Stochastic process (aka random process)

Given alphabet U, a stochastic process (U1, Us, . . . ) can have arbitrary dependence
across the elements and is characterized by:

P((Uy,Us,...,U,) = (u1,us,...,uy))forn =1,2,...and (ug, ug,...,u,) €
Uur.

Need to define joint distribution for every n - way too general to be of much use.
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P(u,, 0

Stationary stochastic process //\’ o (v, o

SM%' \
Definition: Stationary Process dig \buf\"m

o

/U\m\

A stationary process is a stochastic process that is time-invariant, i.e., the probability
distribution doesn't change with time (here time refers to the index in the sequence).
More precisely, we have

P(Ul :’U,l,Uz ZUQ,...,Un:Un) :P(Ul+1 :ul,Ul+2 :u2,...,Ul+n :un)

for every n, every shift [ and all (w1, us, . . ., u,) € U™.

e Mean, variance, entropy, etc. do not change with n. eV = € Voo
HCU.\ = Hcv\ob\

\-—\C\) ‘/\)D = H(Dmoa,\)“oz
\p V\g U lsovoaay (On b@ olelo@l\lig/ﬂﬁh B

e Can still have arbitrary time dependence.
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Examples v() -

11D sequences e.g. sequence of fair iid coin tosses

— s PCL\). UL,\ (W, H\B
P[(Ulu UL*z ey Utﬂb ’éH TTHS} /ll

u —~ P(U\,ﬂ?(uz"@

EE 274: Data Compression - Lecture 8



U, 16 ?Adebende&(:

. S N o Uamry, - 6»vev\
Examples: Stationary time-invariant Markov processes
Ua_y

|-\, 2 Ui+1:(Ui‘|‘£i)m0d3
7.2, Q Z; ~ Ber (%) Yo
S/u

Transition matrix
U {i+1} o 1 2

-0 0.5 0,5 J)0.0
1 0.010.5 0.5
2 0.5 0.0 @.5

/7{’/
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Examples: Stationary time-invariant Markov processes

U, ~Unif({0,1,2}) Mnaiwo(fsaﬁo\/\

—
E——

]DU) ,03 ZP(\J.,\I U,,0>

L f(’(\)\,u\ Plu,=0lu=v)

k=0

= PluzDH P 20M= 0)
¢ Vo

- PCU";‘DWU 00\\).,\\

4 P[0z 3P (Vu=0lU=2)
) 3 l

- l/ s z
e
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Examples: Stationary time-invariant Markov processes

Pé\)l:DB::L
~ PlU=0)=Y

What if U; = 07 Is the process still stationary?

-«
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Ui—~ U, ’UL\?f%‘ ) \{)';-\—%b’ Ug:\—%z o
2 id Bor CV?)
Examples: Stationary time-invariant Markov processes
Ui ~Unif({0,1,2})
U1 = (U + Z;) mod 3

Z; ~ Ber (%) \:CL

T

Question: Can you convert this to an iid sequence?

All the iid compression work still useful!
UL - \)‘ U 3’- u% PP |
Lo L 7
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kth order Markov source Ut - Vaie

é’ma&\n h predect Un

Definition: kth order Markov source
A kth order Markov source is defined by the condition

PU|Up1Ups...) = P(Un|Un_1Un_s...Un_)

for every n. In words, the conditional probability of U, given the entire past depends
only on the past k symbols. Or more precisely, U,, is independent of the past older
than k symbols given the last k symbols.

Most practical stationary sources can be approximated well with a finite memory kth order
Markov source with higher values of k typically providing a be’gt_er approximation (with
diminishing returns). MOLK kov — |\ oyder
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Non-example

Arrival times for buses at a bus stop: U, Uy, Uz, Uy, . . .

4:16 pm, 4:28 pm, 4:46 pm, 5:02 pm

. . . . a
Question 1: Is this stationary? — No . Mean  incseasgs

Question 2: Can you convert this to a stationary (in fact iid) process?

delto [a FF
s -~ |2 minutes
7intevossivel
Yome "
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Information-theoretic quantities for non-iid random variables
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Conditional entropy

The conditional entropy of U given V is defined as

- HU|V) 2 E llog P([}lv)]

Can also write this as

1
Z P(u,v)log P (ufv)

ucl vey
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Properties of conditional entropy

1. Conditioning reduces entropy: H (U |V') < H (U) with equality iff U and V are
independent.
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Properties of conditional entropy

1. Conditioning reduces entropy: H (U |V') < H (U) with equality iff U and V" are
independent.

Intuitively, the theorem says that knowing another random variable Y
can only reduce the uncertainty in X. Note that this 1s true only on the
average. Specifically, H(X|Y = y) may be greater than or less than or
equal to H(X), but on the average H(X|Y) = Zy p(YWH(X|Y =y) <
H (X). For example, in a court case, specific new evidence might increase
uncertainty, but on the average evidence decreases uncertainty.

(source: Cover & Thomas chapter 2)
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Properties of conditional entropy

1. Conditioning reduces entropy: H (U |V') < H (U) with equality iff U and V are
independent.

2. Chain rule of entropy:

HU,V)=HU)+H(\V|U)=H(V)+H(U|V)

EE 274: Data Compression - Lecture 8



€ oy 'lej,)' (0. V) = HVY+H(V)

7-,

Properties of conditional entropy

1. Conditioning reduces entropy: H (U |V') < H (U) with equality iff U and V" are
independent.

2. Chain rule of entropy:
HU,V)=HU)+H(V|U)=H(V)+ HU|V)

3. Joint entropy vs. sum of entropies:
HU,V)<HU)+ H(V)

Jr B or (y"\)
with equality holding iff U and V' are independent. e% g

V=1~V
vV = = HY)
EE 274: Data Compression - Lecture 8 H CU / V) — L < H CU) + )‘(‘V>



Properties of conditional entropy

1. Conditioning reduces entropy: H (U |V') < H (U) with equality iff U and V are
independent.

2. Chain rule of entropy:
HU,V)=H({U)+H(V|U)=H((V)+ H(U|V)
3. Joint entropy vs. sum of entropies:
HU,V)<H{U)+H(V)
with equality holding iff U and V are independent.
Can generalize to conditioning U, 11 on (U1, Us, ..., Uy):
HU,:1|U1, U, ..., U,)
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Entropy rate

Before we look at examples, let's think about how we can generalize entropy for stationary
processes. Some desired criteria:

« works for arbitrarily long dependency so H (U, +1|U1, Us, . . ., U,,) for any finite n
won't do

¢ has operational meaning in compression just like entropy

e is well-defined for any stationary process
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Entropy rate

Not only one, but two equivalent ways of defining it!

SVIGKERS

GET ONE

FOR THE PRIGE OF

TWO!

D
e
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Entropy rate oo
. “vev\ V‘gt
Hy(U) = lim H(Up11|Us, Us, - ..
H2 (U) — ].im (U17 U27 ) Un)
n—00 n
C&T Thm 4.2.1 biks el o b losoe

For a stationary stochastic process, the two limits above are equal. We represent the
limit as H (U) (entropy rate of the process, also denoted as H (U)).
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Examples Y, , - V) _ nHL\D _ H) = it

e Faircointoss —7 "'*d :) E“{'YobJ YD["'Q Qﬂm%,

e Markov example

(v, 10)

U.*;D)
8\\‘/:1\ UI Cﬁoﬂ

e 2-volues
U?/ bu.n\“‘h Md L

0.5 HCUL,U\ H(@Q-;[ 7)% —-' blt
Ha)ml Uy\.—| -e- U'\ - Hwﬂlu""\ :\ bl%‘
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Example: entropy rate of English text o C\D —

e Models (estimate probabilities from text): C\) 0 ,)
v
(a) Oth-order Markov chain (iid): P ‘r

H(X)~4.76 bits per letter P (\)-, Uz, U%)

(b) 1st order Markov chain: L 3
H(X)~4.03  bit lett P (’U'= A’ U2 &
~ 4. its per letter _
=# ‘{xn :AIN«'C}
(c) 4th order Markov chain:
Ttal

H(X)=~28 bits per letter

e Estimate by asking people to guess the next letter until they get it correct. The order of
their guesses reflects their estimate of the order of their conditional probabilities for the next
letter. (Shannon 1952).

H(X)=~13 bits per letter

Source: http:/[reeves.ee.duke.edu/information_theory/lecture4-Entropy_Rates.pdf
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http://reeves.ee.duke.edu/information_theory/lecture4-Entropy_Rates.pdf

Ich@wlev Moy kov
Source —e HCDK_' UK...,-—,Uo)

AEP again!
Shannon-McMillan-Breiman theorem
1
— — 10g2 P(Ul, Uz, cee Un) — H(U) a.s.
n

under technical conditions (ergodicity).
Takeaway: entropy rate is the best compression you can hope to achieve.

You can rewrite the above as P(U1,Us, ..., U,) ~ 2-H(U) which should be familiar
from Lecture 5.
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How to achieve the entropy rate?

« Today: we start small, try to achieve 1st order entropy H (U1 |U).

o Next lecture: achieving entropy rate for higher order processes and then arbitrary
stationary distributions (in theory) and a really performant scheme (in practice). %
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Working with known 1st order Markov source

Suppose we know P(U;|Uy).

How would you go about compressing a block of length 1 using

1
Ui,...,U)

E 10g2 P( %nH(UQIUl)

bits?
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Working with known 1st order Markov source

Idea 1: Use Huffman on blocks of length n.

e Usual concerns: big block size, complexity, etc.

e For non-iid sources, working on independent symbols is just plain suboptimal even
discounting the effects of non-dyadic distributions.

Exercise: Compute H (U; ) and H (U, Us) for
Up ~ Unif({0,1,2})
U1 = (Uz -+ Zi) mod 3

1
Z; ~ Ber | =
(2)

and compare to H(U).
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Quick recap: Arithmetic coding
) I G hd X
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Working with known 1st order Markov source

Encoding 2, 0, 1 0.5

0.66

0.00

Question: Can you explain the general idea?
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Working with known 1st order Markov source

Encoding 2, 0, 1 0.5

0.66

0.00

Question: Can you explain the general idea?
Answer: At every step, split interval by P(—|u;_1) [more generally by
P(—|entire past)].
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Arithmetic coding for known 1st order Markov source

Length of interval after encoding uy, ug, ug, ..., U, =

P(uq)P(us|uy) ... Pup|u,_ 1)

. H 1
Bits for encoding ~ log, Plu)Plualur). - Punlun 1)

Expected bits per symbol

1 T 1
~ —F |lo
n | o2 P(Ul)P(U2|U1)...P(Un|Un1)]
1 T 1 1 — 1
= —F |lo + — E |lo
no [ %2 P(Ul)] nZ [ 52 P(Uw”)]
1 n—1
~ H(U,|Uy)
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Next time: more on compressing non-iid data with arithmetic coding and then we move on
toLZ77!

Thank you!
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