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Context-based arithmetic coding +
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Recap

e Markov chains and stationary processes

» Conditional entropy H(U|V) £ E [log W} —

> wey P(v) 2y HUV =) Ay V)=H (V) +1(01V)
e Entropy rate nCol) £ (D)
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Quiz - Q1 Entropy for Markov Chain y ~ Ber G \/7,\
/.///

P(Up1 = 0|U; = 0) = 0 CQ/N@DM
) S—=5
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U, = Ber(0.5)

P(UZ‘+1=1UZ':].
P(U;1 = 0lU; =1
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Quiz - Q1 Entropy for Markov Chain U ~ Bov ( /7/\

U, = Ber(0.5)

P(Ussy = 1|U; = 0) = 1

P(U;L:OUZ-:O):O CQ/NODM

PUi = 1|U; =1) = 0.5

PUn=0Ui=1)=05  pry=)= ploz o\PLUVOW\ 0)3
2.Whatis H(U;)? v "’S?é\) =0|V. 2!
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Quiz - Q1 Entropy for Markov Chain

U, = Ber(0.5)
P(Ui1 = 1|U;
P(Uit1 =0
P(Uit1 =1
PU;, =0
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Quiz - Q1 Entropy for Markov Chain

U, = Ber(0.5)
PUw=1U;=0)=1
P(U;11 =0|U; =0) =0
P(Ui1=1U;=1)=0.5
P(Ui1=0U;=1)=0.5
4.1s this process stationary? N\O LQC“M’@’
H(V)#HL
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i~ HO.LB— H(L)
3116“( \*\N’)

Quiz - Q1 Entropy for Markov Chain © Mo kav
Hosy =H CUKH ,U ">

Change initial distribution to make Markov chain stationary.

P(Uz+1 = 1 =0)=1
P(U;q =0 Uz —0) =0
P(U;q =1|U; =1) = 0.5
P(Ui1 =0|U; =1) =05

\S
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How to achieve the entropy rate?

Let's start with a first-order Markov source
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Recall entropy rate

H(U) — 1irnn%oo LACIHUHERUA — 1imn%oo H(Un+1|U17 U27 ceey Un)

n

For a first-order Markov source this is simply

H(U) = limy oo T02220) — H(U|U)

Suggests two ways:

H(U1,Us,...,Uy) )
n

1. Coding in bigger and bigger blocks (to achieve lim,,_.

2. Coding incrementally (to achieve H (Us|Uy))
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Working with known 1st order Markov source

Idea 1: Use Huffman on blocks of length n.

e Usual concerns: big block size, complexity, etc.

e For non-iid sources, working on independent symbols is just plain suboptimal even
discounting the effects of non-dyadic distributions.

Exercise: Compute H (U;) and H (U;, Us) for T U \})(U D, )
( 3
U ~ Unif({0,1,2}) g
U1 = (U; + Z;) mod 3 w;//e

1
Z; ~ Ber | =
(2)

and compare to H(U).
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Recap - arithmetic coding for iid probability model

Fre e O

begve
L e D ploy=P(1)
ol '8 , ‘
) Code leghh = 1o 0 b
2 log, .
6 7 0 ﬂ/ Pé‘ )Wx'z) - P(l(ﬂB

EECOdQ lencl@ “~nH (x)

nN— blo ¢ k
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Working with known 1st order Markov source

Encoding 2, 0, 1

0.66

0.00

Question: Can you explain the general idea?
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Working with known 1st order Markov source

Encoding 2, 0, 1

- =

0.66

0.00

Question: Can you explain the general idea?
Answer: At every step, split interval by P(—|u;_1) [more generally by
P(—|entire past)].
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Arithmetic coding for known 1st order Markov source

Length of interval after encoding uy, ug, ug, ..., U, =

P(uq)P(us|uy) ... Pup|u,_ 1)

. H 1
Bits for encoding ~ log, Plu)Plualur). - Punlun 1)

Expected bits per symbol

1 T 1
~ —F |lo
n | o2 P(Ul)P(U2|U1)...P(Un|Un1)]
1 T 1 1 — 1
= —F |lo + — E |lo
no [ %2 P(Ul)] nZ [ 52 P(Uw”)]
1 n—1
~ H(U,|Uy)
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Arithmetic coding for general probability model

Dovar Ky Y, -
Model: P (x| *\,MX%-X wreval leng th
By« P(012) P(112,0)
N5 300D [ Code lengh
Ny = | |
ALY IR b el Togh
";[a\ s ) - |° 2 |
— plote? P x) PlsIx- -

Betbs _s fighes pub- locgges Smalleg
Redickos = o chened iutewal > codle ,eng'u)
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So as long as we can estimate the probability distribution of the next symbol given some
context, we can use arithmetic coding to encode the data. &m) model

X P PlUw\ppstd= L

un, |past) \067, ‘/' =~ O bits

The bits used to encode u,, is simply log, P

Higher the probability of the actually observed symbol, lower the bits you pay!

Bod wodel
PLun) fpash) <O

|
\p%Z, laxg@_
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Predicting the next token with Llama

>>> predict_next_token("than")

Token:
Token:
Token:
Token:
Token:

X, Probability: 18.6%
e, Probability: 8.5%

, Probability: 5.2%
the, Probability: 5.2%
king, Probability: 4.3%
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Predicting the next token with Llama

>>> predict_next_token("louder than")

Token:
Token:
Token:
Token:
Token:

words, Probability: 30.4%
love, Probability: 11.9%
a, Probability: 11.2%
the, Probability: 5.8%
bombs, Probability: 4.7%
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Predicting the next token with Llama

>>> predict_next_token("speak louder than") '\n{l \,JD‘JOL_S 1S ’\%e—

Token:

Token:
Token:
Token:
Token:

words, Probability: 47.8%
money, Probability: 7.8%
a, Probability: 4.7%

the, Probability: 3.2%
actions, Probability: 2.5%
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Predicting the next token with Llama

>>> predict_next_token("Actions speak louder than")
Token: words, Probability: 96.5%

Token: the, Probability: 0.2%

Token: a, Probability: 0.1%

Token: any, Probability: 0.1%

Token: Words, Probability: 0.1%
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Predicting the next token with Llama

>>> predict_next_token("Stanford's data compression")
Token: research, Probability: 9.0%

Token: group, Probablllty 7.5%

Token: and, Probability: 5.6%

Token: library, Probability: 5.3%

Token: team, Probability: 4.1%
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Predicting the next token with Llama

>>> predict_next_token("Enroling in Stanford's data compression")
Token: course, Probability: 56.6%

Token: class, Probability: 10.1%

Token: program, Probability: 4.8%

Token: courses, Probability: 4.5%

Token: and, Probability: 3.0%
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For a kth order model, the previous k symbols are sufficient to predict the next symbol.

In general, the more past context you can use, the better the prediction.

EE 274: Data Compression - Lecture 9



Before we look at some specific prediction models, let's look at the general framework for
context-based arithmetic coding.
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Context-based arithmetic coding

Past context

(ul, 50 0C ,ui_l)

Total bits for encoding:

>

Model

U

l

Z log2

—>

13 —|Ui—1y.--,U
( l ! 1)) Arithmetic coder
step
1
’U,Z|’U,1, .« ui—l)

Question: How would the decoding work?
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Encode using

1

bits
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o ke
Context-based arithmetic coding @ 8

_—»
Lo Poct — Madel —P( )
Deco \L‘ - ‘u:"
~
Encode using
Past context P(—|ui1,...,u1) Io 1
Arithmetic cod €2
(w1, .., ui1) > Model > m;elc;co T P(uguiq,...,u1)
bits

Total bits for encoding:

Z log2 !

’U,Z|’U11, .o 7ui—1)

Question: How would the decoding work?
Answer: Decoder uses same model, at step 7 it has access to u1, . .., u;_1 already

decoded and so can generate the P for the arithmetic coding step!
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Context-based arithmetic coding

Past context

(ul, 500 ,ui_l)

>

Model

13(—|’U,1'_1, oo ,ul)

U

l

Arithmetic coder
step

Question: | don't already have a model. What should | do?
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Context-based arithmetic coding

Past context

(’ul, e ,ui_l)

>

Model

P(~|ui 1y, u1)

U

l

Arithmetic coder
step

—

Question: | don't already have a model? What should | do?

Encode using

1

logy —
P(ui|u2-_1, PN ,’U,l)

bits

Option 1: Two pass: first build ("train") model from data, then encode using it.

Option 2: Adaptive: build ("train") model from data as we see it (more on this shortly).
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Two-pass vs. adaptive

Two-pass approach

learn model from entire data, leading to potentially better compression
more suited for parallelization

X need to store model in compressed file

X need two passes over data, not suitable for streaming

X might not work well with changing statistics

Adaptive approach

no need to store the model

suitable for streaming

X adaptively learning model leads to inefficiency for initial samples
works pretty well in practice!
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Adaptive context-based arithmetic coding

Past context

('u,1, 500 ,u,-_l)

Model update after encoding

U

>

Model

7

l

D(’Co,lé”f
—decnde W,
— Ubdﬂlf'e MJJ&[

~decrde U,
‘%Ubda"e NJ&(

Encode using

13(—|’U,1'_1, oo ,’U,l)

Arithmetic coder log,

step

I Important for encoder and decoder to share exactly the same model state at every step

(including at initialization).

I Don't go about updating model with u; before you perform the encoding for u;.

1. Try not to provide O probability to any symbol.
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C&"' - 60'/.
COJ— /’ Asﬁ = &),
o =56,
Compression and prediction (sec = oG ‘4 g

Cross-entropy loss for prediction (classes C, predicted probabilities ]3 ground truth class:

Y):
1
1,_.log, —
Y;—cC 2
Z; P(clyi,...,¥i-1)

1
(yz‘\yl,- . -7yi—1)

Loss incurred when ground truth is y; is log, ?

Exactly matches the number of bits used for encoding with arithmetic coding!
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Compression and prediction

Good prediction => Good compression

Compression = having a good model for the data

Need not always explicitly model the data

Possible to use rANS instead of arithmetic coding in some settings
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Q: \D‘j'v \6, combvegsov oncod e |
/L 'X,-.-Xn \‘ﬁ [ b\*S

0 -t
Compression and prediction ther B (x,-- Xy = 2

Each compressor induces a predictor!

Recall relation between code length and induced probability model p ~ 2!

Generalizes to prediction setting

Explicitly obtaining the prediction probabilities easier with some compressors than
others
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Prediction models used for compression
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kth order adaptive arithmetic coc@

e Start with a frequency of 1 for each symbol in the (k + 1)th order alphabet (to avoid

zero probabilities)
e As you see symbols, update the frequency counts

o At each step you have a probability distribution over the alphabet induced by the
counts

Remember to update the counts with a symbol after you encode a symbol!

Example: if you saw BANA in past followed by N 90% of times and by L 10% of times, then
predict N with probability 0.9 and L with probability 0.1 given a context of BANA.
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2”\ ovd ¢y

. . . . . —
Example: 1st order adaptive arithmetic coding obishes

i
Datéi: 10101 )
Initial @_rﬁes_[ggunﬁ'_}

¢(0,0) =1
c(0,1) =1
c(1,0) = 1
c(ﬁl) =1

Assume past is padded with Os
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Example: 1st order adaptive arithmetic coding q
mes

Data6101011 ozt O\ — &
- 00> 'fhme

PD= L

Current symbol: 1
Previous symbol: O (padding)

Predicted probabilitg P(1]0) = c(%&i(o 1 (: %

Counts:

c(0,0) =1
c(0,1)=1—2
c(1,0) =
c(1,1) =1
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Example: 1st order adaptive arithmetic coding

Data: 101011

Current symbol: O
Previous symbol: 1

Predicted probability: P(0|1) = c(1,(c)§i£21,1) — %
Counts

c(0,0) =

c(0,1) =2

c(1,0) =1 — 2

c(1,1) =1

EE 274: Data Compression - Lecture 9



Example: 1st order adaptive arithmetic coding

~-
DataQ’IQlO’I’I

Current symbol: 1
Previous symbol: O

Predicted probability: P(1]|0) = c(o,iggile) = %
=

Counts:

c(0,0) =

c(0,1) =2 — 3

c(1,0) =

c(1,1) =1
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Example: 1st order adaptive arithmetic coding

Data: 101011

Current symbol: O
Previous symbol: 1

Predicted probability: P(0|1) = c(1,(c)§i£21,1) — %
Counts

c(0,0) =

c(0,1) =3

c(1,0)=2—3

c(1,1) =1
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)

e Over time we learn the empirical distribution of the data

Observations

e |nitially start off with uniform distribution - can change prior to enforce some prior
knowledge [both encoder and decoder need to know!] g 1\0"""““‘5 O

e You can do this for k = 0 (iid data with unknown distribution)!
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kth order adaptive arithmetic coding (AAC)

def freqs_current(self):
"""Calculate the current freqs. We use the past k symbols to pick out

the corresponding frequencies for the (k+1)th.

freqs_given_context = np.ravel(self.freqs_kplusl_tuple[tuple(self.past_k)])

def update_model(self, s):
"""function to update the probability model. This basically involves update the count

for the most recently seen (k+1) tuple.

Args:
s (Symbol): the next symbol

# updates the model based on the new symbol
# index self.freqs_kplusl_tuple using (past_k, s) [need to map s to index]
self.freqs_kplusl_tuple[(xself.past_k, s)] +=1

self.past_k = self.past_kl[1:] + [s]
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kth order adaptive arithmetic coding (AAC)

On sherlock.txt :

>>> with open("sherlock.txt") as f:

>>> data = f.read()

>>>

>>> data_block = DataBlock(data)

>>> alphabet = list(data_block.get_alphabet())

>>> aec_params = AECParams()

>>> encoder = ArithmeticEncoder(aec_params, AdaptiveOrderKFregModel(alphabet, k, aec_params.MAX_ALLOWED_TOTAL_FREQ))
>>> encoded_bitarray = encoder.encode_block(data_block)

>>> print(len(encoded_bitarray)//8) # convert to bytes
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kth order adaptive arithmetic coding

Compressor
Oth order

1st order
2nd order
3rd order
9zip

bzip2

compressed bits/byte

4.26
3.34
2.87
3.10

2.78
2.05
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kth order adaptive arithmetic coding

Compressor compressed bits/byte
Oth order 4.26
1st order 3.34
2nd order 2.87
3rd order 310
gzip 2.78
bzip2 2.05

Question: Why is order 3 doing worse than order 27
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this
kth order adaptive arithmetic coding (AAC) Thi s

Limitations

 slow, memory complexity grows exponentially in k

e counts become very sparse for large k, leading to worse performance

e unable to exploit similarities in prediction for similar context ,‘t:)
)

Some of these can be overcome with smarter modeling as discussed later.

Note: Despite their performance limitations, context based models are still employed as
the entropy coding stage after suitably preprocessing the data (LZ, BWT, etc.).
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%\,\‘ Oh\j own te

What if we did a two-pass approach? :
i@, .

order adaptive empirical conditional entropy

Oth order 4.26 4.26 ’E,,\y)w\— B \DQQQ\SQV;%\ S
Istorder 3.34 3.27 1000 _osdey nodel
2nd order 2.87 2.44 o U"\"“ﬂ =\

3rd order 3.10 1.86 PCB’V&j%‘k‘ﬁ elee)=0

Why is there an increasing gap between adaptive coding performance and empirical
entropy as we increase the order?
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r 1%

o As the order increases, knowing the empirical distribution becomes closer to just
storing the data itself in the model.

Cost of storing the model!

o At the extreme, you just have a single |datasize| long context and the model is just
the data itself!

* We need to account for the cost of storing the model.

e |n practice, adaptive models are often preferred due to their simplicity and not
requiring two passes over the data.
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Minimum Description Length (MDL) principle

Minimize sum of model size and compressed size given model

o :\‘ﬂe SSeA \ Model 922
e T/WW\ ’

Compsessed. Site

Model
Coh'\})lexﬂig
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Prediction models used for compression

o kth order adaptive (in SCL):
https://github.com/kedartatwawadi/stanford_compression_library/blob/main/scl/com

pressors/probability_models.py

e Solving the sparse count problem:
o Context Tree Weighting (CTW)

o Prediction by Partial Matching (PPM)

o Advanced prediction models:
o Neural net based: NNCP, Tensorflow-compress, DZip

o Ensemble methods: CMIX, CMIX talk
e Resources: https://mattmahoney.net/dc/dce.html#Section_4

These are some of the most powerful compressors around, but often too slow for many

applications!
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https://github.com/kedartatwawadi/stanford_compression_library/blob/main/scl/compressors/probability_models.py
https://github.com/kedartatwawadi/stanford_compression_library/blob/main/scl/compressors/probability_models.py
https://ieeexplore.ieee.org/document/382012
https://en.wikipedia.org/wiki/Prediction_by_partial_matching
https://bellard.org/nncp/
https://github.com/byronknoll/tensorflow-compress
https://arxiv.org/abs/1911.03572
https://www.byronknoll.com/cmix.html
https://www.youtube.com/watch?v=NxzlrF5z5_Y&ab_channel=StanfordResearchTalks
https://mattmahoney.net/dc/dce.html#Section_4

DeepZip/NNCP framework

a) Encoder Framework

Uniform NN NN
Distribution Predictor Predictor

Compressed Ari (hmet Arithmetic
- De: od Decoder

b) Decoder Framework

Figure 1: Encoder-Decoder Framework.

DeepZip: Two pass approach, first train model on data, then use it to compress data. Model
stored in compressed file.
NNCP: Keep updating NN predictor periodically as you see more data.
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CMIX context mixing

input
byte-level bit-level
models models
byte-level
LSTM mixer L

bit-level context mixer

Y

SSE

Y

output

Use neural net to mix the predictions of various context models, according to how well they
predicted in the past.
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Text compression over the years

Entropy for English Language

5 ©® Human Estimates

Algorithm

© Baselines

uniform IID characters [4.7]

considering only letter-frequencies [4.14]

-
[0
©
© 3 a7ip [2.58]
(1] (LZ77 + Huffman)
N
(] considering word-frequencies [2.62]
-
] _
o 2 bzip2 [2.03] zstd [1.73]
7)) (BWT + Huffman) (LZ77 + ANS entropy coding)
= Shannon’s Estimate [1.3] )
Q (upper bound estimate based on ~ Cover &King [1.3] _ o 143 Ren, Takahashi, Tanaka-lshii [1.22]
1 subject, 100 phrases) (asymptotic upper bound based on gambling) zip [1.43] (Shannon’s expt @large-scale using MTurk)
@ < (LZMA2 + range coder) "
- CMIX [0.89]
1 (model ensemble based on context)
NNCP [0.87]

(transformer networks + arithmetic coding)

1950 1968
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LLM based compression - going beyond MDL setting

e Throw your most powerful predictor, a model that would take gigabytes to describe,
and use that to compress the data.

¢ |n atraditional setting, the size of the model would be prohibitive to store as part of the
compressed file (also painstakingly slow to compress and decompress)

e When is this setting useful?
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LLM based compression - going beyond MDL setting

e Throw your most powerful predictor, a model that would take gigabytes to describe,
and use that to compress the data.

e |n atraditional setting, the size of the model would be prohibitive to store as part of the
compressed file (also painstakingly slow to compressi and decompress)

e When is this setting useful?
o For understanding limits of compressibility/entropy rate estimation

o When there is a large amount of data of the same type and you can afford to
deploy the model separately on each decompression node

o To demonstrate concepts in a compression course!
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LLM perplexity loss

LLMs are trained as predictors, and their loss function is simply the cross-entropy loss (or
perplexity = 261055-e1t10PY) Thys they are in-effect being trained for compression!

Let's use ts_zip: Text Compression using Large Language Models to use LLMs for

compression!

We use rwkv_169M and rwkv_430M models.
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https://bellard.org/ts_server/ts_zip.html

LLM results (note context size is in tokens not characters)

Results on a 2023 novel (848 KB English text).

Compressed Bits per Byte

® Others
Small Model
©® Medium Model

3.0

2.5

2.0 1
1.806
1.5 4

1.0 1.186

Compressed Bits per Byte

0.5 1

0.0 -
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LLM results

On an ancient Pali text (transcribed in Roman script):

Compressor compressed bits/byte
2nd order AAC 2.66
gzip 211
bzip2 1.71

small LLM model 2.41
medium LLM model 2.19

Why do the LLMs no longer do so well compared to bzip2?
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Even more powerful models (credit: Kedar)!

https://gist.github.com/chachachaudhary274/707eeed868167b2e8c30000d747316d9
Llama-13B (4 bit quantized)

Dataset Context length compressed bits/byte
2023 short story 10 1.228
2023 short story 50 1.027
2023 short story 512 0.874
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https://gist.github.com/chachachaudhary274/707eeed868167b2e8c30000d747316d9

Even more powerful models (credit: Kedar)!

https://gist.github.com/chachachaudhary274/707eeed868167b2e8c30000d747316d9
Llama-13B (4 bit quantized)

Dataset Contextlength compressed bits/byte [ oﬁq/J“
Sherlock 10 1433 P
Sherlock 50 0.542

Sherlock 512 0.200

This one is way too good! What's going on?
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https://gist.github.com/chachachaudhary274/707eeed868167b2e8c30000d747316d9

LLM based compression

e Remarkable results

e Be careful about model-data mismatch (e.g., Pali text) and overfitting to training data
(e.g., Sherlock)

e \ery slow and compute intensive
o might become practical with hardware acceleration in future (for some
applications)

e Resources:
o ts_zip: https://bellard.org/ts_server/ts_zip.html

o DeepMind paper: https://aps.arxiv.org/abs/2309.10668
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