Lecture 9

Context-based arithmetic coding +

EE 274: Data Compression - Lecture 9

Recap

e Markov chains and stationary processes

» Conditional entropy H(U|V) £ E [log W} —

> wey P(v) 2y HUV =) Ay V)=H (V) +1(01V)
e Entropy rate nCol) £ (D)
H(U) p— limn%oo H(Un_|_1|U1, []27 ceey U’I’L) — limn%oo H(UlaU’fL,,Un)

EE 274: Data Compression - Lecture 9

Quiz - Q1 Entropy for Markov Chain y ~ Ber G \/7,\
/.///

P(Up1 = 0|U; = 0) = 0 CQ/N@DM
) S—=5
)

U, = Ber(0.5)

P(UZ‘+1=1UZ':].
P(U;1 = 0lU; =1

EE 274: Data Compression - Lecture 9

Quiz - Q1 Entropy for Markov Chain U ~ Bov (/7/\

U, = Ber(0.5)

P(Ussy = 1|U; = 0) = 1

P(U;L:OUZ-:O):O CQ/NODM

PUi = 1|U; =1) = 0.5

PUn=0Ui=1)=05 pry=)= ploz o\PLUVOW\ 0)3
2.Whatis H(U;)? v "’S?é\) =0|V. 2!
H (8ex () = O &) L. N J) e

/Lt

'?(UL D —(~ = 3/1_,

EE 274: Data Compression - Lecture 9

Quiz - Q1 Entropy for Markov Chain

U, = Ber(0.5)
P(Ui1 = 1|U;
P(Uit1 =0
P(Uit1 =1
PU;, =0

EE 274: Data Compression - Lecture 9

Quiz - Q1 Entropy for Markov Chain

U, = Ber(0.5)
PUw=1U;=0)=1
P(U;11 =0|U; =0) =0
P(Ui1=1U;=1)=0.5
P(Ui1=0U;=1)=0.5
4.1s this process stationary? N\O LQC“M’@’
H(V)#HL

EE 274: Data Compression - Lecture 9

i~ HO.LB— H(L)
3116“(*\N’)

Quiz - Q1 Entropy for Markov Chain © Mo kav
Hosy =H CUKH ,U ">

Change initial distribution to make Markov chain stationary.

P(Uz+1 = 1 =0)=1
P(U;q =0 Uz —0) =0
P(U;q =1|U; =1) = 0.5
P(Ui1 =0|U; =1) =05

\S

EE 274: Data Compression - Lecture 9

How to achieve the entropy rate?

Let's start with a first-order Markov source

EE 274: Data Compression - Lecture 9

Recall entropy rate

H(U) — 1irnn%oo LACIHUHERUA — 1imn%oo H(Un+1|U17 U27 ceey Un)

n

For a first-order Markov source this is simply

H(U) = limy oo T02220) — H(U|U)

Suggests two ways:

H(U1,Us,...,Uy))
n

1. Coding in bigger and bigger blocks (to achieve lim,,_.

2. Coding incrementally (to achieve H (Us|Uy))

EE 274: Data Compression - Lecture 9

Working with known 1st order Markov source

Idea 1: Use Huffman on blocks of length n.

e Usual concerns: big block size, complexity, etc.

e For non-iid sources, working on independent symbols is just plain suboptimal even
discounting the effects of non-dyadic distributions.

Exercise: Compute H (U;) and H (U;, Us) for T U \})(U D,)
(3
U ~ Unif({0,1,2}) g
U1 = (U; + Z;) mod 3 w;//e

1
Z; ~ Ber | =
(2)

and compare to H(U).

EE 274: Data Compression - Lecture 9

Recap - arithmetic coding for iid probability model

Fre e O

begve
L e D ploy=P(1)
ol '8 , ‘
) Code leghh = 1o 0 b
2 log, .
6 7 0 ﬂ/ Pé‘)Wx'z) - P(l(ﬂB

EECOdQ lencl@ “~nH (x)

nN— blo ¢ k

EE 274: Data Compression - Lecture 9

Working with known 1st order Markov source

Encoding 2, 0, 1

0.66

0.00

Question: Can you explain the general idea?

EE 274: Data Compression - Lecture 9

Working with known 1st order Markov source

Encoding 2, 0, 1

- =

0.66

0.00

Question: Can you explain the general idea?
Answer: At every step, split interval by P(—|u;_1) [more generally by
P(—|entire past)].

EE 274: Data Compression - Lecture 9

Arithmetic coding for known 1st order Markov source

Length of interval after encoding uy, ug, ug, ..., U, =

P(uq)P(us|uy) ... Pup|u,_ 1)

. H 1
Bits for encoding ~ log, Plu)Plualur). - Punlun 1)

Expected bits per symbol

1 T 1
~ —F |lo
n | o2 P(Ul)P(U2|U1)...P(Un|Un1)]
1 T 1 1 — 1
= —F |lo + — E |lo
no [%2 P(Ul)] nZ [52 P(Uw”)]
1 n—1
~ H(U,|Uy)

EE 274: Data Compression - Lecture 9

Arithmetic coding for general probability model

Dovar Ky Y, -
Model: P (x| *\,MX%-X wreval leng th
By« P(012) P(112,0)
N5 300D [Code lengh
Ny = | |
ALY IR b el Togh
";[a\ s) - |° 2 |
— plote? P x) PlsIx- -

Betbs _s fighes pub- locgges Smalleg
Redickos = o chened iutewal > codle ,eng'u)

EE 274: Data Compression - Lecture 9

So as long as we can estimate the probability distribution of the next symbol given some
context, we can use arithmetic coding to encode the data. &m) model

X P PlUw\ppstd= L

un, |past) \067, ‘/' =~ O bits

The bits used to encode u,, is simply log, P

Higher the probability of the actually observed symbol, lower the bits you pay!

Bod wodel
PLun) fpash) <O

|
\p%Z, laxg@_

EE 274: Data Compression - Lecture 9

Predicting the next token with Llama

>>> predict_next_token("than")

Token:
Token:
Token:
Token:
Token:

X, Probability: 18.6%
e, Probability: 8.5%

, Probability: 5.2%
the, Probability: 5.2%
king, Probability: 4.3%

EE 274: Data Compression - Lecture 9

Predicting the next token with Llama

>>> predict_next_token("louder than")

Token:
Token:
Token:
Token:
Token:

words, Probability: 30.4%
love, Probability: 11.9%
a, Probability: 11.2%
the, Probability: 5.8%
bombs, Probability: 4.7%

EE 274: Data Compression - Lecture 9

Predicting the next token with Llama

>>> predict_next_token("speak louder than") '\n{l \,JD‘JOL_S 1S ’\%e—

Token:

Token:
Token:
Token:
Token:

words, Probability: 47.8%
money, Probability: 7.8%
a, Probability: 4.7%

the, Probability: 3.2%
actions, Probability: 2.5%

EE 274: Data Compression - Lecture 9

ke NeRY SCTM[OO\
\Cﬁzf l/;é, =L b{%:

Predicting the next token with Llama

>>> predict_next_token("Actions speak louder than")
Token: words, Probability: 96.5%

Token: the, Probability: 0.2%

Token: a, Probability: 0.1%

Token: any, Probability: 0.1%

Token: Words, Probability: 0.1%

EE 274: Data Compression - Lecture 9

Predicting the next token with Llama

>>> predict_next_token("Stanford's data compression")
Token: research, Probability: 9.0%

Token: group, Probablllty 7.5%

Token: and, Probability: 5.6%

Token: library, Probability: 5.3%

Token: team, Probability: 4.1%

EE 274: Data Compression - Lecture 9

Predicting the next token with Llama

>>> predict_next_token("Enroling in Stanford's data compression")
Token: course, Probability: 56.6%

Token: class, Probability: 10.1%

Token: program, Probability: 4.8%

Token: courses, Probability: 4.5%

Token: and, Probability: 3.0%

EE 274: Data Compression - Lecture 9

For a kth order model, the previous k symbols are sufficient to predict the next symbol.

In general, the more past context you can use, the better the prediction.

EE 274: Data Compression - Lecture 9

Before we look at some specific prediction models, let's look at the general framework for
context-based arithmetic coding.

EE 274: Data Compression - Lecture 9

Context-based arithmetic coding

Past context

(ul, 50 0C ,ui_l)

Total bits for encoding:

>

Model

U

l

Z log2

—>

13 —|Ui—1y.--,U
(l ! 1)) Arithmetic coder
step
1
’U,Z|’U,1, .« ui—l)

Question: How would the decoding work?

EE 274: Data Compression - Lecture 9

log, —
P(ui|uz~_1, cee

Encode using

1

bits

7u1)

o ke
Context-based arithmetic coding @ 8

_—»
Lo Poct — Madel —P()
Deco \L‘ - ‘u:"
~
Encode using
Past context P(—|ui1,...,u1) Io 1
Arithmetic cod €2
(w1, .., ui1) > Model > m;elc;co T P(uguiq,...,u1)
bits

Total bits for encoding:

Z log2 !

’U,Z|’U11, .o 7ui—1)

Question: How would the decoding work?
Answer: Decoder uses same model, at step 7 it has access to u1, . .., u;_1 already

decoded and so can generate the P for the arithmetic coding step!
EE 274: Data Compression - Lecture 9

Context-based arithmetic coding

Past context

(ul, 500 ,ui_l)

>

Model

13(—|’U,1'_1, oo ,ul)

U

l

Arithmetic coder
step

Question: | don't already have a model. What should | do?

EE 274: Data Compression - Lecture 9

Encode using

Context-based arithmetic coding

Past context

(’ul, e ,ui_l)

>

Model

P(~|ui 1y, u1)

U

l

Arithmetic coder
step

—

Question: | don't already have a model? What should | do?

Encode using

1

logy —
P(ui|u2-_1, PN ,’U,l)

bits

Option 1: Two pass: first build ("train") model from data, then encode using it.

Option 2: Adaptive: build ("train") model from data as we see it (more on this shortly).

EE 274: Data Compression - Lecture 9

Two-pass vs. adaptive

Two-pass approach

learn model from entire data, leading to potentially better compression
more suited for parallelization

X need to store model in compressed file

X need two passes over data, not suitable for streaming

X might not work well with changing statistics

Adaptive approach

no need to store the model

suitable for streaming

X adaptively learning model leads to inefficiency for initial samples
works pretty well in practice!

EE 274: Data Compression - Lecture 9

Adaptive context-based arithmetic coding

Past context

('u,1, 500 ,u,-_l)

Model update after encoding

U

>

Model

7

l

D(’Co,lé”f
—decnde W,
— Ubdﬂlf'e MJJ&[

~decrde U,
‘%Ubda"e NJ&(

Encode using

13(—|’U,1'_1, oo ,’U,l)

Arithmetic coder log,

step

I Important for encoder and decoder to share exactly the same model state at every step

(including at initialization).

I Don't go about updating model with u; before you perform the encoding for u;.

1. Try not to provide O probability to any symbol.

EE 274: Data Compression - Lecture 9

A

Efaﬁfg{ai—a model v/ U,

C&"' - 60'/.
COJ— /’ Asﬁ = &),
o =56,
Compression and prediction (sec = oG ‘4 g

Cross-entropy loss for prediction (classes C, predicted probabilities]3 ground truth class:

Y):
1
1,_.log, —
Y;—cC 2
Z; P(clyi,...,¥i-1)

1
(yz‘\yl,- . -7yi—1)

Loss incurred when ground truth is y; is log, ?

Exactly matches the number of bits used for encoding with arithmetic coding!

EE 274: Data Compression - Lecture 9

Compression and prediction

Good prediction => Good compression

Compression = having a good model for the data

Need not always explicitly model the data

Possible to use rANS instead of arithmetic coding in some settings

EE 274: Data Compression - Lecture 9

Q: \D‘j'v \6, combvegsov oncod e |
/L 'X,-.-Xn \‘ﬁ [b*S

0 -t
Compression and prediction ther B (x,-- Xy = 2

Each compressor induces a predictor!

Recall relation between code length and induced probability model p ~ 2!

Generalizes to prediction setting

Explicitly obtaining the prediction probabilities easier with some compressors than
others

EE 274: Data Compression - Lecture 9

Prediction models used for compression

EE 274: Data Compression - Lecture 9

kth order adaptive arithmetic coc@

e Start with a frequency of 1 for each symbol in the (k + 1)th order alphabet (to avoid

zero probabilities)
e As you see symbols, update the frequency counts

o At each step you have a probability distribution over the alphabet induced by the
counts

Remember to update the counts with a symbol after you encode a symbol!

Example: if you saw BANA in past followed by N 90% of times and by L 10% of times, then
predict N with probability 0.9 and L with probability 0.1 given a context of BANA.

EE 274: Data Compression - Lecture 9

2”\ ovd ¢y

. —
Example: 1st order adaptive arithmetic coding obishes

i
Datéi: 10101)
Initial @_rﬁes_[ggunﬁ'_}

¢(0,0) =1
c(0,1) =1
c(1,0) = 1
c(ﬁl) =1

Assume past is padded with Os

EE 274: Data Compression - Lecture 9

Example: 1st order adaptive arithmetic coding q
mes

Data6101011 ozt O\ — &
- 00> 'fhme

PD= L

Current symbol: 1
Previous symbol: O (padding)

Predicted probabilitg P(1]0) = c(%&i(o 1 (: %

Counts:

c(0,0) =1
c(0,1)=1—2
c(1,0) =
c(1,1) =1

EE 274: Data Compression - Lecture 9

Example: 1st order adaptive arithmetic coding

Data: 101011

Current symbol: O
Previous symbol: 1

Predicted probability: P(0|1) = c(1,(c)§i£21,1) — %
Counts

c(0,0) =

c(0,1) =2

c(1,0) =1 — 2

c(1,1) =1

EE 274: Data Compression - Lecture 9

Example: 1st order adaptive arithmetic coding

~-
DataQ’IQlO’I’I

Current symbol: 1
Previous symbol: O

Predicted probability: P(1]|0) = c(o,iggile) = %
=

Counts:

c(0,0) =

c(0,1) =2 — 3

c(1,0) =

c(1,1) =1

EE 274: Data Compression - Lecture 9

Example: 1st order adaptive arithmetic coding

Data: 101011

Current symbol: O
Previous symbol: 1

Predicted probability: P(0|1) = c(1,(c)§i£21,1) — %
Counts

c(0,0) =

c(0,1) =3

c(1,0)=2—3

c(1,1) =1

EE 274: Data Compression - Lecture 9

~11000 1 {{To] |6
01002 1y[D] fo)

)

e Over time we learn the empirical distribution of the data

Observations

e |nitially start off with uniform distribution - can change prior to enforce some prior
knowledge [both encoder and decoder need to know!] g 1\0"""““‘5 O

e You can do this for k = 0 (iid data with unknown distribution)!

EE 274: Data Compression - Lecture 9

kth order adaptive arithmetic coding (AAC)

def freqs_current(self):
"""Calculate the current freqs. We use the past k symbols to pick out

the corresponding frequencies for the (k+1)th.

freqs_given_context = np.ravel(self.freqs_kplusl_tuple[tuple(self.past_k)])

def update_model(self, s):
"""function to update the probability model. This basically involves update the count

for the most recently seen (k+1) tuple.

Args:
s (Symbol): the next symbol

updates the model based on the new symbol
index self.freqs_kplusl_tuple using (past_k, s) [need to map s to index]
self.freqs_kplusl_tuple[(xself.past_k, s)] +=1

self.past_k = self.past_kl[1:] + [s]

EE 274: Data Compression - Lecture 9

kth order adaptive arithmetic coding (AAC)

On sherlock.txt :

>>> with open("sherlock.txt") as f:

>>> data = f.read()

>>>

>>> data_block = DataBlock(data)

>>> alphabet = list(data_block.get_alphabet())

>>> aec_params = AECParams()

>>> encoder = ArithmeticEncoder(aec_params, AdaptiveOrderKFregModel(alphabet, k, aec_params.MAX_ALLOWED_TOTAL_FREQ))
>>> encoded_bitarray = encoder.encode_block(data_block)

>>> print(len(encoded_bitarray)//8) # convert to bytes

EE 274: Data Compression - Lecture 9

kth order adaptive arithmetic coding

Compressor
Oth order

1st order
2nd order
3rd order
9zip

bzip2

compressed bits/byte

4.26
3.34
2.87
3.10

2.78
2.05

EE 274: Data Compression - Lecture 9

(T]

Count p Yoy -
st s6dex X X8
J/ 2 6(‘/)-fl\
.|

72 - Qﬁ;/ X'-_H/ X

@_ﬂd«? P)r)qké\mler

kth order adaptive arithmetic coding

Compressor compressed bits/byte
Oth order 4.26
1st order 3.34
2nd order 2.87
3rd order 310
gzip 2.78
bzip2 2.05

Question: Why is order 3 doing worse than order 27

EE 274: Data Compression - Lecture 9

this
kth order adaptive arithmetic coding (AAC) Thi s

Limitations

 slow, memory complexity grows exponentially in k

e counts become very sparse for large k, leading to worse performance

e unable to exploit similarities in prediction for similar context ,‘t:)
)

Some of these can be overcome with smarter modeling as discussed later.

Note: Despite their performance limitations, context based models are still employed as
the entropy coding stage after suitably preprocessing the data (LZ, BWT, etc.).

EE 274: Data Compression - Lecture 9

%\,\‘ Oh\j own te

What if we did a two-pass approach? :
i@, .

order adaptive empirical conditional entropy

Oth order 4.26 4.26 ’E,,\y)w\— B \DQQQ\SQV;%\ S
Istorder 3.34 3.27 1000 _osdey nodel
2nd order 2.87 2.44 o U"\"“ﬂ =\

3rd order 3.10 1.86 PCB’V&j%‘k‘ﬁ elee)=0

Why is there an increasing gap between adaptive coding performance and empirical
entropy as we increase the order?

EE 274: Data Compression - Lecture 9

\K

r 1%

o As the order increases, knowing the empirical distribution becomes closer to just
storing the data itself in the model.

Cost of storing the model!

o At the extreme, you just have a single |datasize| long context and the model is just
the data itself!

* We need to account for the cost of storing the model.

e |n practice, adaptive models are often preferred due to their simplicity and not
requiring two passes over the data.

EE 274: Data Compression - Lecture 9

Minimum Description Length (MDL) principle

Minimize sum of model size and compressed size given model

o :\‘ﬂe SSeA \ Model 922
e T/WW\ ’

Compsessed. Site

Model
Coh'\})lexﬂig

EE 274: Data Compression - Lecture 9

Prediction models used for compression

o kth order adaptive (in SCL):
https://github.com/kedartatwawadi/stanford_compression_library/blob/main/scl/com

pressors/probability_models.py

e Solving the sparse count problem:
o Context Tree Weighting (CTW)

o Prediction by Partial Matching (PPM)

o Advanced prediction models:
o Neural net based: NNCP, Tensorflow-compress, DZip

o Ensemble methods: CMIX, CMIX talk
e Resources: https://mattmahoney.net/dc/dce.html#Section_4

These are some of the most powerful compressors around, but often too slow for many

applications!
EE 274: Data Compression - Lecture 9

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/scl/compressors/probability_models.py
https://github.com/kedartatwawadi/stanford_compression_library/blob/main/scl/compressors/probability_models.py
https://ieeexplore.ieee.org/document/382012
https://en.wikipedia.org/wiki/Prediction_by_partial_matching
https://bellard.org/nncp/
https://github.com/byronknoll/tensorflow-compress
https://arxiv.org/abs/1911.03572
https://www.byronknoll.com/cmix.html
https://www.youtube.com/watch?v=NxzlrF5z5_Y&ab_channel=StanfordResearchTalks
https://mattmahoney.net/dc/dce.html#Section_4

DeepZip/NNCP framework

a) Encoder Framework

Uniform NN NN
Distribution Predictor Predictor

Compressed Ari (hmet Arithmetic
- De: od Decoder

b) Decoder Framework

Figure 1: Encoder-Decoder Framework.

DeepZip: Two pass approach, first train model on data, then use it to compress data. Model
stored in compressed file.
NNCP: Keep updating NN predictor periodically as you see more data.

EE 274: Data Compression - Lecture 9

CMIX context mixing

input
byte-level bit-level
models models
byte-level
LSTM mixer L

bit-level context mixer

Y

SSE

Y

output

Use neural net to mix the predictions of various context models, according to how well they
predicted in the past.

EE 274: Data Compression - Lecture 9

Text compression over the years

Entropy for English Language

5 ©® Human Estimates

Algorithm

© Baselines

uniform IID characters [4.7]

considering only letter-frequencies [4.14]

-
[0
©
© 3 a7ip [2.58]
(1] (LZ77 + Huffman)
N
(] considering word-frequencies [2.62]
-
] _
o 2 bzip2 [2.03] zstd [1.73]
7)) (BWT + Huffman) (LZ77 + ANS entropy coding)
= Shannon’s Estimate [1.3])
Q (upper bound estimate based on ~ Cover &King [1.3] _ o 143 Ren, Takahashi, Tanaka-lshii [1.22]
1 subject, 100 phrases) (asymptotic upper bound based on gambling) zip [1.43] (Shannon’s expt @large-scale using MTurk)
@ < (LZMA2 + range coder) "
- CMIX [0.89]
1 (model ensemble based on context)
NNCP [0.87]

(transformer networks + arithmetic coding)

1950 1968

EE 274: Data Compression - Lecture 9

1986

2004 2022

LLM based compression - going beyond MDL setting

e Throw your most powerful predictor, a model that would take gigabytes to describe,
and use that to compress the data.

¢ |n atraditional setting, the size of the model would be prohibitive to store as part of the
compressed file (also painstakingly slow to compress and decompress)

e When is this setting useful?

EE 274: Data Compression - Lecture 9

LLM based compression - going beyond MDL setting

e Throw your most powerful predictor, a model that would take gigabytes to describe,
and use that to compress the data.

e |n atraditional setting, the size of the model would be prohibitive to store as part of the
compressed file (also painstakingly slow to compressi and decompress)

e When is this setting useful?
o For understanding limits of compressibility/entropy rate estimation

o When there is a large amount of data of the same type and you can afford to
deploy the model separately on each decompression node

o To demonstrate concepts in a compression course!

EE 274: Data Compression - Lecture 9

LLM perplexity loss

LLMs are trained as predictors, and their loss function is simply the cross-entropy loss (or
perplexity = 261055-e1t10PY) Thys they are in-effect being trained for compression!

Let's use ts_zip: Text Compression using Large Language Models to use LLMs for

compression!

We use rwkv_169M and rwkv_430M models.

EE 274: Data Compression - Lecture 9

https://bellard.org/ts_server/ts_zip.html

LLM results (note context size is in tokens not characters)

Results on a 2023 novel (848 KB English text).

Compressed Bits per Byte

® Others
Small Model
©® Medium Model

3.0

2.5

2.0 1
1.806
1.5 4

1.0 1.186

Compressed Bits per Byte

0.5 1

0.0 -

EE 274: Data Compression - Lecture 9

LLM results

On an ancient Pali text (transcribed in Roman script):

Compressor compressed bits/byte
2nd order AAC 2.66
gzip 211
bzip2 1.71

small LLM model 2.41
medium LLM model 2.19

Why do the LLMs no longer do so well compared to bzip2?

EE 274: Data Compression - Lecture 9

Even more powerful models (credit: Kedar)!

https://gist.github.com/chachachaudhary274/707eeed868167b2e8c30000d747316d9
Llama-13B (4 bit quantized)

Dataset Context length compressed bits/byte
2023 short story 10 1.228
2023 short story 50 1.027
2023 short story 512 0.874

EE 274: Data Compression - Lecture 9

https://gist.github.com/chachachaudhary274/707eeed868167b2e8c30000d747316d9

Even more powerful models (credit: Kedar)!

https://gist.github.com/chachachaudhary274/707eeed868167b2e8c30000d747316d9
Llama-13B (4 bit quantized)

Dataset Contextlength compressed bits/byte [oﬁq/J“
Sherlock 10 1433 P
Sherlock 50 0.542

Sherlock 512 0.200

This one is way too good! What's going on?

EE 274: Data Compression - Lecture 9

https://gist.github.com/chachachaudhary274/707eeed868167b2e8c30000d747316d9

LLM based compression

e Remarkable results

e Be careful about model-data mismatch (e.g., Pali text) and overfitting to training data
(e.g., Sherlock)

e \ery slow and compute intensive
o might become practical with hardware acceleration in future (for some
applications)

e Resources:
o ts_zip: https://bellard.org/ts_server/ts_zip.html

o DeepMind paper: https://aps.arxiv.org/abs/2309.10668

EE 274: Data Compression - Lecture 9

https://bellard.org/ts_server/ts_zip.html
https://aps.arxiv.org/abs/2309.10668

Noxt +me:— LZ47

_.l—
(oosless Combie sgion M \owdfce

ﬁwlqm\k %“ /

