Lecture 13

Water-filling Intuition + Transform Coding
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Quiz Q1

You have been given following joint probability distribution table for $$(X,Y)$$ on binary
alphabets:
P(X=xY=y) y=0 y=1
x=0 05 O
Xx="1 0.25 0.25
1.1 Calculate the joint entropy H(X,Y).
H(X,Y)=3,,P(X =2,Y = y)log, prz=py=y = 15

1.2 Calculate the mutual information I(X;Y).
I(X;Y) = H(X) + HY) — HX,Y) = Hy(0.5) + Hy(0.75) — 1.5 = 0.31
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Quiz Q2

Consider a uniformly distributed source on alphabet
{0,1,2}.
You have been asked to lossily compress this source under MSE (mean square error)

distortion and have been asked to calculate the rate distortion function R(D) for a given
distortion value D.

2.1Whatis R(D = 0)?

R(D=0)=H(X) =log,3

2.2 Whatis R(D = 1)?

R(D = 1) = 0!, since we can always send 1 and achieve distortion D (X, X'Z) <=1
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Quiz Q3

Fora Ber(1/2) source with Hamming distortion, we saw in class that R(D) = 1 —
Hy(D), where Hy(p) is entropy of a binary random variable with probability p. Which of

the following are correct? P\ ) R CD)

(Choose all that apply)

There exists a scheme working on large block sizes achieving distortion D and rate <
1 — Hy(D). — -

here exists a scheme working on large block sizes achieving distortion D and rate >
1 — Hy(D). _
here exists a scheme working(on large block sizesE:hieving distortion D and rate
arbitrarily close to 1 — Hy(D).
There exists a scmming on single symbols at a time (block size = 1) achieving
distortion D and rate arbitrarily closeto 1 — Hb(m.
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Recap

1. Learnt about Mutual Information

Let X, Y be two random variables with joint distribution p(, ¢). Then we define the
mutual information between X, Y as:

I(X;Y)=H(X)+H() - H(X,Y)
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Reca d
P (K, %, %) ——

2.Learnt about (Shannon's) Rate-Distortion theory.

Let X1, X, . . . be data generated i.i.d. Then, the optimal rate R (D) for a given

maximum distortion D is:

)
lR D)= min I(X;Y
( ) Ed(X,%’)gD ( 7 )

where the expectation in the minimum is over distributions q(z, y) =(p(x)§(y|x),
where q(y|x) are any arbitrary conditional distributions.
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X Y oy(o,1)

Recap

3. Saw example for Gaussian Sources under MSE distortion.
—

Let X ~ N (0, 0?),ie.the data samples X;, X, . . . are distributed as unit
=

gaussians. Also, lets consider the distortion to be the mean square distortion:

d(z,y) = (z — y)? i.e the mse distortion. Then:

'____-__" {1§%£} iiiiiz'&)

o /r/

Also denoted by Rg(0?, D) = ( log, < D ,E QQ&'O)Z>

RGO wonclomd = cm*

EE 274: Data Compression - Lecture 13 3




Recap: Performance

KMeom A

1.0 -

Mean square distortion

0.2 1

° @Nith k=2

—— D(R) =272R

c= \

0.0 0.5

1.0

15 2.0

Rate (bits per source component)
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Thumb-rule for Lossy Compression
Yevel

Thumb-rule: For a given distortion mea)/ure, allocate more bits to the components
E—

with higher variance.
(
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Today

1. Water-filling intuition for correlated gaussian sources

2.Learn about Transform Coding
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Lossy Compression Problem Formulation

iy = R
X.,X,/ng,,./xk_a Tef!, ., (Ng, ..... <

JJ C BHS)
ANEEVAN 4N [ lg—\J
XI/Yz/""/XK é‘_. DEC

The two metrics for lossy compression are:

e RateR = ZO%N bits/source component

+ Distortion D = d(X*, X*) = I ZZ 1d(Xz,X)
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Generalization of Shannon's RD Theorem

Let X1, X, ... be data generated I.1.D.. Then, the optimal rate R(D) for a given
maximum distortion D is:

R(D)= min I(X;Y)
Ed(X,Y)<D

This is also referred to as memoryless sources.
But what if the data is correlated?
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Generalization of Shannon's RD Theorem
< (K‘.,'Fz_' —_ - *V\j

Consider source X" and reconstruction X ™. Then,

n . 1 n, yn
R(X", D) = mingy yo guy<p (X" X")

CE— - n e
i.e. Shannon's RD theorem generalizes to correlated sources as well.

o Justlike R(X, D) was the analog of entropy of X, R(X™, D) is the analog of
entropy of the n-tuple.
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Generalization of Shannon's RD Theorem

Consider source X ™ and reconstruction X".Let X = X7, X9, X3, ... definea
stationary stochastic process. Then,

R(X,D) = lim R(X",D)

n—o0

o R(X, D) isthe analog of entropy rate of the n-tuple.
o can show this limit exists for stationary sources.

the best you can do for stationary processes, in the limit of encoding arbitrarily many
symbols in a block, is R(X, D)
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Example: Gaussian Source, k = 2

e« Let X1 ~ N(0,0%), Xy ~ N(0,03) be independent random variables.

X
is a 2-dimensional random vector.

[ ) 2 _
Then, X [ X,

2
e Notation: R(X?, D) = Rg ([J%] ,D).

It can be shown that:

0'2 .
R (|74] D) = minyp, <3 {Ra(o?, D) + Rela}, D)
2

09

i.e. we can greedily optimize independently over each component of the vector, ensuring
that the total distortion is less than D.
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Example: Gaussian Source, k = 2

o2 , 1
Rg % , D] = mml(D1+D2)§D_[RG(U%> D) + R(;(ai, Dy)]
~— 0-2 o 2 2 g 2— 'L'

L L[(1, ot L 1og 22
= MUNL(D,+Dy)<D & 9 9 0g D, 9 08 —— D,

w
____—
Can be solved using convex optimization techniques (solving KKT conditions). We will look
into the answer for some intuition.
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Example: Gaussian Source; Intuition

WLOG: assume 0% < 05

R (%, D — 10 s (tog2
G o2 = MIN1(p, | D,)< D5 g 9 gD2 N

Quiz-1: Should lever allow D1 > 07?2 pNao 4

EE 274: Data Compression - Lecture 13 18



Example: Gaussian Source; Intuition

R(D2)
WLOG: assume 03 < 03 R(DD ___Z..
2 2 2
0'1 o . 1 1 01 1 09
Rg ([031 ,D) = TN L (D, +D,)<D 5 [(2 log -D1)+ + (2 log Dz)J
Quiz-1: Should | ever allow Dy > ¢2?
Quiz-2: Whatis R(D1) if D1 > 0i? @ | Dl
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Example: Gaussian Source; Intuition

WLOG: assume 0% < o5

. 1[/1 o’ 1 o2
Rg ([031 ,D) TN (Dy+Dy)<D &5 [(2 log D1)+ + (2 og DQ)J

Quiz-3: What is R(D) if D > 03;03 Q( ——— NN ——
T ¢ Ar \
—
=& 87)E p=el D74
1 — -

R\ = RL: Q 20
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ok (Rip, Do)

Example: Gaussian Source; Solution

Let R(D) curve be parameterized by 6, i.e. R(0), D(8). Then, solution to the optimization
problem

2 2 5
0'1 o . 1 01 09
Rg ([031 ,D) = mm%(D1+D2)fD 5 [(2 log Dl) + (2 log D2) ]

. by- / ‘
Is given by - QQ‘G‘?%
e D; = min{0, 07} fori = 1,2;and
1 1 o’ 1 o
oR—§ [(ﬁlogﬁ)++(§log1}2

i.e. we can find @ which satisfies the first condition, giving us the R(D) curve as
R(6), D(6).

EE 274: Data Compression - Lecture 13

21



Example: Gaussian Source; Water-filling Intuition

3 cases (WLOG: assume 03 < 03):

1.D < o?and D < o3

zal<D</§r @- L&Y
3D>01—|—a2
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Example: Gaussian Source; Water-filling Intuition

One of the main ideas in lossy-compression, recall thumb-rule!

Thumb-rule: For a given distortion me e, allocate more bits to the components

with higher variance. \QN.Q

For a block of 2 components, we can allocate more bits to the component with higher

. ——
variance.

This is the water-filling intuition.
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Onto Transform Coding: A Few Comments

o We looked into an example of uncorrelated gaussian sources, and saw that we can
use water-filling intuition to selectively allocate bits to different components.

e This generalizes beautifully to correlated gaussian processes as well (see notes).
e But in general, we will have correlated non-gaussian sources, and we will need to do

something more sophisticated.

Transform Coding: Transform the source to a different domain to allow for
decorrelated components with different variances. Then, use water-filling intuition to
selectively allocate bits to different components of the transformed source.
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Transform Coding

(recall) Lossy compression problem formulation:

>("X”/?%/"'/XL-_? j_ef‘/ . (NEJ """
I
&—R DEC F_\J

The two metrics for lossy compression are:

N A
><| / ‘Xz/""/ XV\

logN

e RateR = 2

bits/source component

« Distortion D = d(X*, X*) = I ZZ . d(X;, X;)

EE 274: Data Compression - Lecture 13
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Transform Coding

Notation: X* = (X1, ..., X}) as X. Therefore, X € R¥ (vector).

o Convert X to Y = T'(X), for this class assume T is linear (matrix)
 Need that I’ should be invertible

e We can use scalar or vector quantizationon Y toget Y

Z“PE& T — \3
T

(bits) .(\
A | DEC '{ \,W \Q Qkaf
iy oK

R=T(9)
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Transform Coding

Why transform coding?

e Decorrelation: X can be correlated, aim to de-correlate it
o allows for efficient coding of Y e.g. using scalar quantization instead of vector
quantization

e Energy compaction: more energy in first few components of Y than in the last few
o allows for allocating bits to different components of Y in a more-efficient manner
(recall: water-filling!)

This gives us criterion as to how we would like to choose 1.
We will look into a specific transform 1" which is an orthonormal matrix.

EE 274: Data Compression - Lecture 13
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Linear Algebra Review: Orthogonal Matrices

Consider Y = A X (matrix-vector product). If A is orthonormal (denoted by U), then:

o UTU = I (orthonormality) Jh o aquoie WolBs! R
e Square of the Euclidean norm, also callen the signal, is preserved under
transform: —

ategte o [|V]? = YTY = XTOTUX = X7X = ||X|?
—,—3; o Thisis also called the Parseval's theorem in context of Fourier transform.
o This says that the energy in transform domain matches the energy in the original.
e The transform preserves Euclidian distances between points, i.e.,
o if Y] = UXjand Yy = UXy,then ||Y; — V3||? = || X1 — X||%
o Allows us to do analysis for MSE distortion!

o Dysp = E[|X — X|? = E[[Y - Y|
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Linear Algebra Review: Eigenvalue [?\ A O ‘\
Decomposition/Decorrelation N ~a, )

o Any symmetric matrix A can be decomposedas A = UAUT, where U is

L
orthonormal and A is diagonal.

e U is the matrix of (normalized) eigenvectors of A and A is the matrix of eigenvalues
—_——

OfA BU‘: ?\‘\)‘ %\E\R
e U isorthonormal.ie. UTU = 1.
. ~————————— . T .
e We can use this to get de-correlated components of X byusingY = U~ X, ie.
T =UT. — d
. . L T U - d)‘ 2" -U\“
o Let covariance matrixof X be ¥ = E[ X X*]. Lo :

o We can apply eigenvalue decompositionto get & = UAU™. _N.:: A A, \Q]
o Then, Y = U? X is de-correlated,ie, E[YY?] = E[UT X XTU] = O Aw
EE 274: Data Comprecég;EngrXST]U — UTEU — A 29
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Decorrelation Example

Example: consider a source X, = pX,,_1 + /1 — p?N(0,0?), Xy ~ N(0, 7).
We will work with blocks of 2,i.e. k = 2.

Original Data samples (k =2)

3 - oo

cafy

-4

T T T T T T
-4 -3 -2 -1 0 1 2 3 4
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Decorrelation Example
Example: consider a source X,, = pX,,_1 + 1/1 — p?N(0,0?), Xy ~ N(0,0?).We
will work with blocks of 2,i.e. k = 2.

Quiz-4: What is the 2 X 2 covariance matrix X2 of X ?
HINT: your sequence is stationary!

X; — EX;
=K ' ! X; —EX; X,.1—EX;
[[Xz'+1 — EXz‘+1] | H 1]

EE 274: Data Compression - Lecture 13
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Decorrelation Example

Example: consider a source X,, = pX,,_1 + 1/1 — p2N(0, %), Xy ~ N(0,0?%). We
will work with blocks of 2,i.e. k = 2.

Quiz-4: What is the 2 X 2 covariance matrix X2 of X ?

L p|
_[pllg

EE 274: Data Compression - Lecture 13
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Decorrelation Example

Example: consider a source X, = pX,,_1 + /1 — p?N(0, 0?), Xo ~ N (0, 0?). We
will work with blocks of 2,i.e. k = 2.

Can show that the eigenvalues of > are

-A1 = (1 + p)ofand Ay = (1 — p)o?

2 11 2

Quiz-5: What is the eigenvalue-based transform at block-size kK = 2 and transformed

1 1
- corresponding eigenvectors are u; = % [ ] and ug = % [ 1].
components Y ?

EE 274: Data Compression - Lecture 13
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Decorrelation Example

Example: consider a source X,, = pX,,_1 + /1 — p2N(0,0?%), Xy ~ N(0,0?).We
will work with blocks of 2,i.e. k = 2.

Quiz-5: What is the eigenvalue-based transform at block-size k = 2, transformed

components Y ?

1 1
T 1 1
T=U [ ] and thereforeY = TX = 7 [

1 X; + Xita
V2 (1 —1

X; — X1

EE 274: Data Compression - Lecture 13
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Decorrelation Example

Example: consider a source X,, = pX,,_1 + /1 — p2N(0,0?%), Xy ~ N(0,0?).We
will work with blocks of 2,ie. k = 2.

y —Tx = L Xt A
V2 | X; — X
. Original Data samples (k = 2) . Transformed Data samples in 2D (k=2)
31 s 34
oby
2 2
1 1
0 0
-1 -1
-2 -2
- 3
-4 - - - - - . -4 - . . . . .
-4 -3 -2 -1 o0 1 2 3 4 -4 -3 -2 -1 o0 1 2 3 4

Quiz-6: What is the 2 X 2 covariance matrix 2. of Y ?
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Decorrelation Example

Example: consider a source X,, = pX,,_1 + /1 — p?N(0,0?), Xy ~ N(0,0%). We

will work with blocks of 2,i.e. k = 2.

Original Data samples (k =2)

Transformed Data samples in 2D (k = 2)

24
H
g
34 _fe
P

-3 -2 -1 0 1 2 3

Quiz-6: What is the 2 X 2 covariance matrix 2y of Y ?
0 72
Y p—

0 (1-p)

Moreover, the variances of Y7 and Y5 are such that Y7 has higher variance than Y5. This is

s _ |(1+p)

EE 274: Data Compression - Lecture 13
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Karhunen-Loeve Transform (KLT)

* We looked into what is called the Karhunen-Loeve Transform (KLT) in signal
processing.

e The KLT is the eigenvalue-based linear transform.
e The KLT is the optimal transform for a given covariance matrix > (without proof).

o By optimal, we mean it in the sense that it maximally reduces the correlation
between the transformed components.

o The components have the property that they are uncorrelated and ordered in
decreasing order of variance.

o Useful for many applications: often used for data compression, dimensionality
reduction, and feature extraction in various fields, including image and signal
processing.
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Transform Coding + KLT

* We looked into one specific transform, the KLT, which is an orthonormal matrix and
allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X ?

EE 274: Data Compression - Lecture 13
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Transform Coding + KLT

e \We looked into one specific transform, the KLT, which is an orthonormal matrix and
allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X ?

For MSE distortion, we can allocate bits to the transformed components Y in a more-
efficient manner, i.e., allocate more bits to the components with higher energy. (recall:
thumb-rule!)

Original Data samples (k =2) . Transformed Data samples in 2D (k = 2)

of
ot
5] 7 3

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
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Transform Coding Notebook

https://colab.research.google.com/drive/1ZcnjlcoOHEbITQWvcpiPYAQHbtfB829x?
usp=sharing

EE 274: Data Compression - Lecture 13
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Transform Coding Performance on our Example

Example: consider a source X,, = pX,_1 + v/1 — p2N (0, 0?)

[VQ] [Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.163
[VQ] [Bit per symbol: 1] [Block Size: 4]Rate: 1.0, Distortion: 0.095

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.276
[TC_VvQ] [Bit per symbol: 1] [Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.970
[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [2, @]]Rate: 1.0, Distortion: 0.122
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Transform Coding Performance on our Example

Example: consider a source X,, = pX,_1 + v/1 — p2N (0, 0?)

[VQ] [Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.107
[VQ] [Bit per symbol: 1] [Block Size: 4]Rate: 1.0, Distortion: 0.020

[TC_VQ] [Bit per symbol: 1][Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.204
[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.890
[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [2, @]]Rate: 1.0, Distortion: 0.030
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Transform Coding Performance on our Example

Example: consider a source X,, = pX,_1 + v/1 — p2N (0, 0?)

[VQ] [Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.305
[VQ] [Bit per symbol: 1] [Block Size: 4]Rate: 1.0, Distortion: 0.271

[TC_VvQ] [Bit per symbol: 1][Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.374
[TC_VQ] [Bit per symbol: 1] [Block Size: 2][Bitrate Split: [@, 2]]Rate: 1.0, Distortion: 0.786
[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [2, @]]Rate: 1.0, Distortion: 0.343

EE 274: Data Compression - Lecture 13 43



Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?

EE 274: Data Compression - Lecture 13
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Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?
Ans:
o KLT is dependent on statistics of input data X!
o KLT is optimal for a given covariance matrix ..
o |n practice, we do not know 22 and need to estimate it from data.

o Moreover, data in real-life is not stationary, i.e., statistics change over time. Need

to re-estimate ..

o Therefore, in practice, KLT is computationally expensive!

Next class we will see other fixed orthonormal transforms which are more practical such as
DCT, DFT, wavelets, etc.
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