

Lecture 13

Water-filling Intuition + Transform Coding

Announcements

- *) Noah OH tomorrow 130-230, same room
- *) L11 quiz solutions on website in L12 slides

2

Quiz Q1

You have been given following joint probability distribution table for \$\$(X,Y)\$\$ on binary alphabets:

P(X=x,Y=y)	y = 0	y = 1
x = 0	0.5	0
x = 1	0.25	0.25

1.1 Calculate the joint entropy H(X,Y).

$$H(X,Y) = \sum_{x,y} P(X=x,Y=y) \log_2 \frac{1}{P(X=x,Y=y)} = 1.5.$$

1.2 Calculate the mutual information I(X;Y).

$$I(X;Y) = H(X) + H(Y) - H(X,Y) = H_b(0.5) + H_b(0.75) - 1.5 = 0.31$$

Quiz Q2

Consider a uniformly distributed source on alphabet $\{0,1,2\}.$

You have been asked to lossily compress this source under MSE (mean square error) distortion and have been asked to calculate the rate distortion function R(D) for a given distortion value D.

2.1 What is R(D=0)?

$$R(D=0) = H(X) = \log_2 3$$

2.2 What is R(D=1)?

R(D=1)=0!, since we can always send 1 and achieve distortion $D(X_i,\hat{X}_i)<=1$.

Quiz Q3

For a Ber(1/2) source with Hamming distortion, we saw in class that $R(D)=1-H_b(D)$, where $H_b(p)$ is entropy of a binary random variable with probability p. Which of the following are correct? (Choose all that apply)

There exists a scheme working on large block sizes achieving distortion D and rate $< 1 - H_b(D)$.

There exists a scheme working on large block sizes achieving distortion D and rate > $1-H_b(D)$.

[] There exists a scheme working on large block sizes achieving distortion D and rate arbitrarily close to $1-H_b(D)$.

There exists a scheme working on single symbols at a time (block size = 1) achieving distortion D and rate arbitrarily close to $1 - H_b(D)$.

5

Recap

1. Learnt about Mutual Information

Let X,Y be two random variables with joint distribution p(x,y). Then we define the mutual information between X,Y as:

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

Recap

2. Learnt about (Shannon's) Rate-Distortion theory.

Let X_1, X_2, \ldots be data generated i.i.d. Then, the optimal rate R(D) for a given maximum distortion D is:

$$R(D) = \min_{\mathbb{E} d(X,Y) \leq D} I(X;Y)$$

where the expectation in the minimum is over distributions q(x,y) = p(x)q(y|x) where q(y|x) are any arbitrary conditional distributions.

Recap

3. Saw example for Gaussian Sources under MSE distortion.

Let $X\sim\mathcal{N}(0,\sigma^2)$, i.e. the data samples X_1,X_2,\ldots are distributed as unit gaussians. Also, lets consider the distortion to be the mean square distortion: $d(x,y)=(x-y)^2$ i.e the mse distortion. Then:

$$R(D) = \begin{cases} \frac{1}{2} \log_2 \frac{\sigma^2}{D} & 0 \le D \le \sigma^2 \\ 0 & D > \sigma^2 \end{cases}$$
 Also denoted by $R_G(\sigma^2, D) = \left(\frac{1}{2} \log_2 \frac{\sigma^2}{D}\right)_+$
$$R(x, D) = \left(\frac{1}{2} \log_2 \frac{\sigma^2}{D}\right)_+$$

$$R(x, D) = \left(\frac{1}{2} \log_2 \frac{\sigma^2}{D}\right)_+$$

Recap: Performance

$$R(0) = \frac{1}{2} \log \frac{6^2}{D}$$

$$V_A = \frac{-2R}{2}$$

$$D(R) = \frac{2}{6^2}$$

Thumb-rule for Lossy Compression

level

Thumb-rule: For a given distortion measure, allocate more bits to the components with higher variance.

10

Today

- 1. Water-filling intuition for correlated gaussian sources
- 2. Learn about Transform Coding

Lossy Compression Problem Formulation

The two metrics for lossy compression are:

- Rate $R = \frac{logN}{k}$ bits/source component
- ullet Distortion D $=d(X^k,\hat{X}^k)=rac{1}{k}\sum_{i=1}^k d(X_i,\hat{X}_i)$

Generalization of Shannon's RD Theorem

Let X_1, X_2, \ldots be data generated I.I.D.. Then, the optimal rate R(D) for a given maximum distortion D is:

$$R(D) = \min_{\mathbb{E} d(X,Y) \leq D} I(X;Y)$$

This is also referred to as memoryless sources.

But what if the data is *correlated*?

Generalization of Shannon's RD Theorem

Consider source X^n and reconstruction \hat{X}^n . Then,

 $p(x^n, \hat{x}^n)$

$$R(X^n,D)=min_{E[d(X^n,\hat{X}^n)]\leq D}rac{1}{n}I(X^n;\hat{X}^n)$$

i.e. Shannon's RD theorem generalizes to correlated sources as well.

• Just like R(X,D) was the analog of entropy of X, $R(X^n,D)$ is the analog of entropy of the n-tuple.

Generalization of Shannon's RD Theorem

Consider source X^n and reconstruction \hat{X}^n . Let $\mathbf{X}=X_1,X_2,X_3,...$ define a stationary stochastic process. Then,

$$R(\mathbf{X},D) = \lim_{n o \infty} R(X^n,D)$$

- $R(\mathbf{X}, D)$ is the analog of entropy rate of the n-tuple.
 - can show this limit exists for stationary sources.

the best you can do for stationary processes, in the limit of encoding arbitrarily many symbols in a block, is $R(\mathbf{X},D)$

Example: Gaussian Source, k=2

- ullet Let $X_1 \sim N(0,\sigma_1^2)$, $X_2 \sim N(0,\sigma_2^2)$ be independent random variables.
- ullet Then, $X^2=egin{bmatrix} X_1 \ X_2 \end{bmatrix}$ is a 2-dimensional random vector.
- ullet Notation: $R(X^2,D)=R_G\left(egin{bmatrix}\sigma_1^2\\sigma_2^2\end{bmatrix},D
 ight).$

It can be shown that:

$$R_G\left(egin{bmatrix} \sigma_1^2 \ \sigma_2^2 \end{bmatrix}, D
ight) = min_{rac{1}{2}(D_1+D_2)\leq D}rac{1}{2}[R_G(\sigma_1^2,D_1)+R_G(\sigma_1^2,D_2)]$$

i.e. we can greedily optimize independently over each component of the vector, ensuring that the total distortion is less than D.

16

Example: Gaussian Source, k=2

$$egin{aligned} R_G\left(egin{bmatrix} \sigma_1^2 \ \sigma_2^2 \end{bmatrix}, D
ight) &= min_{rac{1}{2}(D_1 + D_2) \leq D} rac{1}{2}[R_G(\sigma_1^2, D_1) + R_G(\sigma_1^2, D_2)] \ &= min_{rac{1}{2}(D_1 + D_2) \leq D} rac{1}{2}\left[\left(rac{1}{2}\lograc{\sigma_1^2}{D_1}
ight)_+ + \left(rac{1}{2}\lograc{\sigma_2^2}{D_2}
ight)_+
ight] \end{aligned}$$

Can be solved using convex optimization techniques (solving KKT conditions). We will look into the answer for some intuition.

$$\left(\frac{1}{2}\log\frac{\sigma^2}{D}\right)_{+} = \begin{cases} \frac{1}{2}\log\frac{\sigma^2}{D} & 0 \leq 0 \end{cases}$$

Example: Gaussian Source; Intuition

WLOG: assume $\sigma_1^2 \leq \sigma_2^2$

$$R_G\left(egin{bmatrix} \sigma_1^2 \ \sigma_2^2 \end{bmatrix}, D
ight) = min_{rac{1}{2}(D_1+D_2)\leq D} \; rac{1}{2} \left[\left(rac{1}{2}\lograc{\sigma_1^2}{D_1}
ight)_+ + \left(rac{1}{2}\lograc{\sigma_2^2}{D_2}
ight)_+
ight]_+$$

Quiz-1: Should I ever allow $D_1>\sigma_1^2$?

Example: Gaussian Source; Intuition

WLOG: assume $\sigma_1^2 \leq \sigma_2^2$

$$R_G\left(\left[egin{aligned} \sigma_1^2\ \sigma_2^2 \end{aligned}
ight],D
ight)=min_{rac{1}{2}(D_1+D_2)\leq D}\;rac{1}{2}\left[\left(rac{1}{2}\lograc{\sigma_1^2}{D_1}
ight)_++\left(rac{1}{2}\lograc{\sigma_2^2}{D_2}
ight)_+
ight]$$

Quiz-1: Should I ever allow $D_1>\sigma_1^2$?

Quiz-2: What is
$$R(D_1)$$
 if $D_1>\sigma_1^2$? $lacksquare$

R(D)

Example: Gaussian Source; Intuition

WLOG: assume $\sigma_1^2 \leq \sigma_2^2$

$$R_G\left(\begin{bmatrix}\sigma_1^2\\\sigma_2^2\end{bmatrix},D\right)=min_{\frac{1}{2}(D_1+D_2)\leq D}\,\frac{1}{2}\left[\left(\frac{1}{2}\log\frac{\sigma_1^2}{D_1}\right)_++\left(\frac{1}{2}\log\frac{\sigma_2^2}{D_2}\right)_+\right]$$
 Quiz-3: What is $R(D)$ if $D>\frac{\sigma_1^2+\sigma_2^2}{2}$

OH (RO, DIO)

Example: Gaussian Source; Solution

Let R(D) curve be parameterized by θ , i.e. $R(\theta), D(\theta)$. Then, solution to the optimization problem

$$R_G\left(egin{bmatrix} \sigma_1^2 \ \sigma_2^2 \end{bmatrix}, D
ight) = min_{rac{1}{2}(D_1+D_2)\leq D} \; rac{1}{2} \left[\left(rac{1}{2}\lograc{\sigma_1^2}{D_1}
ight)_+ + \left(rac{1}{2}\lograc{\sigma_2^2}{D_2}
ight)_+
ight]$$

is given by:

given by:
$$D_i=\min\{\theta,\sigma_i^2\} \text{ for } i=1,2\text{; and } \frac{1}{2}(D_1+D_2)=D.$$

•
$$R=rac{1}{2}\left[\left(rac{1}{2}\lograc{\sigma_1^2}{D_1}
ight)_++\left(rac{1}{2}\lograc{\sigma_2^2}{D_2}
ight)_+
ight]$$

i.e. we can find heta which satisfies the first condition, giving us the R(D) curve as $R(\theta), D(\theta).$

Example: Gaussian Source; Water-filling Intuition

3 cases (WLOG: assume $\sigma_1^2 < \sigma_2^2$):

1.
$$D < \sigma_1^2$$
 and $D < \sigma_2^2$

$$2.\sigma_{1}^{2} < D < \sigma_{2}^{2}$$

3.
$$D>rac{\sigma_1^2+\sigma_2^2}{2}$$

$$A = \frac{1}{2} \left(\frac{1}{2} \log \frac{c_1^2}{D} + \frac{1}{2} \log \frac{c_2^2}{D} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} \log \frac{c_1^2}{D} + \frac{1}{2} \log \frac{c_2^2}{D} \right)$$

$$Q_{i} = G_{i}^{2} - G_{i}^{2}$$

$$Q_{i} = G_{i}^{2} - G_{i}^{2}$$

$$R(0) = \frac{1}{a} \left(R_1 + R_2 \right)$$

$$= \frac{1}{a} \left(0 + \frac{1}{a} log \left(\frac{\sigma_2^2}{20 - \sigma_1^2} \right) \right)$$

$$D_{1} = G_{1}^{2} - \frac{1}{2}$$

$$R(0) = 0$$

Example: Gaussian Source; Water-filling Intuition

One of the main ideas in lossy-compression, recall thumb-rule!

Thumb-rule: For a given distortion measure, allocate more bits to the components with higher variance.

For a block of 2 components, we can allocate more bits to the component with higher variance.

This is the water-filling intuition.

Onto Transform Coding: A Few Comments

- We looked into an example of uncorrelated gaussian sources, and saw that we can use water-filling intuition to selectively allocate bits to different components.
- This generalizes beautifully to correlated gaussian processes as well (see notes).
- But in general, we will have correlated non-gaussian sources, and we will need to do something more sophisticated.

Transform Coding: Transform the source to a different domain to allow for decorrelated components with different variances. Then, use water-filling intuition to selectively allocate bits to different components of the transformed source.

Transform Coding

(recall) Lossy compression problem formulation:

The two metrics for lossy compression are:

- Rate R $= \frac{logN}{k}$ bits/source component
- Distortion D $=d(X^k,\hat{X}^k)=rac{1}{k}\sum_{i=1}^k d(X_i,\hat{X}_i)$

Transform Coding

Notation: $X^k = (X_1, \dots, X_k)$ as \underline{X} . Therefore, $\underline{X} \in \mathbb{R}^k$ (vector).

- ullet Convert \underline{X} to $\underline{Y}=T(X)$, for this class assume T is linear (matrix)
- ullet Need that T should be invertible
- We can use scalar or vector quantization on \underline{Y} to get $\hat{\underline{Y}}$

26

Transform Coding

Why transform coding?

- ullet Decorrelation: X can be correlated, aim to de-correlate it
 - \circ allows for efficient coding of \underline{Y} e.g. using scalar quantization instead of vector quantization
- ullet Energy compaction: more *energy* in first few components of \underline{Y} than in the last few
 - \circ allows for allocating bits to different components of \underline{Y} in a more-efficient manner (recall: water-filling!)

This gives us criterion as to how we would like to choose T.

We will look into a specific transform T which is an orthonormal matrix.

Linear Algebra Review: Orthogonal Matrices

Consider Y=AX (matrix-vector product). If A is orthonormal (denoted by U), then:

• $U^TU=I$ (orthonormality)

- Vistom enough a ci U
- Square of the Euclidean norm, also called energy in the signal, is preserved under transform:

transform:
$$\mathbf{y}_{1}^{2}+\mathbf{y}_{2}^{2}=\circ ||Y||^{2}=Y^{T}Y=X^{T}U^{T}UX=X^{T}X=||X||^{2}$$

$$\mathbf{y}_{1}^{2}+\mathbf{y}_{2}^{2}=\circ ||Y||^{2}=X^{T}U^{T}UX=X^{T}X=||X||^{2}$$

- This is also called the Parseval's theorem in context of Fourier transform.
 - o This says that the energy in transform domain matches the energy in the original.
 - The transform preserves Euclidian distances between points, i.e.,

$$\circ$$
 if $Y_1=UX_1$ and $Y_2=UX_2$, then $||Y_1-Y_2||^2=||X_1-X_2||^2$.

Allows us to do analysis for MSE distortion!

$$egin{array}{l} \circ \ D_{MSE} = \mathbb{E}||X - \hat{X}||^2 = \mathbb{E}||Y - \hat{Y}||^2 \end{array}$$

Linear Algebra Review: Eigenvalue Decomposition/Decorrelation

- Any symmetric matrix A can be decomposed as $A=U\Lambda U^T$, where U is orthonormal and Λ is diagonal.
- U is the matrix of (normalized) eigenvectors of A and Λ is the matrix of eigenvalues of A.
- ullet U is orthonormal, i.e., $U^TU=I$.
- ullet We can use this to get de-correlated components of X by using $Y=U^TX$, i.e. $T=U^T.$
 - \circ Let covariance matrix of X be $\Sigma = \mathbb{E}[XX^T]$.
 - \circ We can apply eigenvalue decomposition to get $\Sigma = U \Lambda U^T$.
 - \circ Then, $Y = U^T X$ is de-correlated, i.e., $\mathbb{E}[YY^T] = \mathbb{E}[U^T X X^T U] = \mathbb{E}[U^T X X^T U]$

EE 274: Data Compression U^T $\mathbb{E}[X_1X_1^T]U = U^T\Sigma U = \Lambda.$

$$\begin{array}{lll}
\Xi_{x} = \mathbb{E}(xx^{T}) & x \rightarrow \text{de meaned} \\
\psi(x) = 0 & \psi(x) = 0
\end{array}$$

$$\begin{array}{lll}
\Xi_{x} = \mathbb{E}(xx^{T}) & x \rightarrow \text{de meaned} \\
\psi(x) = 0 & \text{Total (not nondown)} & \text{Total (not nondown)} \\
Y = U^{T}X
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(xx^{T}) & \text{Total (not nondown)} & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(yy^{T}) = \mathbb{E}(y^{T}) = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(xx^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(yy^{T}) = \mathbb{E}(y^{T}) = \mathbb{E}(y^{T}) & \text{Total (not nondown)}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(xx^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(xx^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(xx^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) = \mathbb{E}(y^{T}) = \mathbb{E}(y^{T}) = \mathbb{E}(y^{T})$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)} \\
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total (not nondown)}
\end{aligned}$$

$$\begin{array}{lll}
\Xi_{y} = \mathbb{E}(y^{T}) & \text{Total$$

Example: consider a source $X_n=\rho X_{n-1}+\sqrt{1-\rho^2}\mathcal{N}(0,\sigma^2)$, $X_0\sim\mathcal{N}(0,\sigma^2)$. We will work with blocks of 2, i.e. k=2.

EE 274: Data Compression - Lecture 13

Example: consider a source $X_n=\rho X_{n-1}+\sqrt{1-\rho^2}\mathcal{N}(0,\sigma^2)$, $X_0\sim\mathcal{N}(0,\sigma^2)$. We will work with blocks of 2, i.e. k=2.

Quiz-4: What is the 2×2 covariance matrix Σ of X?

HINT: your sequence is stationary!

$$\Sigma = \mathbb{E}\left[egin{bmatrix} X_i - \mathbb{E}X_i \ X_{i+1} - \mathbb{E}X_{i+1} \end{bmatrix} \left[X_i - \mathbb{E}X_i & X_{i+1} - \mathbb{E}X_{i+1}
ight]
ight]$$

Example: consider a source $X_n=\rho X_{n-1}+\sqrt{1-\rho^2}\mathcal{N}(0,\sigma^2)$, $X_0\sim\mathcal{N}(0,\sigma^2)$. We will work with blocks of 2, i.e. k=2.

Quiz-4: What is the 2×2 covariance matrix Σ of X?

$$\Sigma = egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix} \sigma^2$$

Example: consider a source $X_n=\rho X_{n-1}+\sqrt{1-\rho^2}\mathcal{N}(0,\sigma^2)$, $X_0\sim\mathcal{N}(0,\sigma^2)$. We will work with blocks of 2, i.e. k=2.

Can show that the eigenvalues of Σ are

–
$$\lambda_1=(1+
ho)\sigma^2$$
 and $\lambda_2=(1-
ho)\sigma^2$

- corresponding eigenvectors are
$$u_1=rac{1}{\sqrt{2}} egin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $u_2=rac{1}{\sqrt{2}} egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Quiz-5: What is the eigenvalue-based transform at block-size k=2 and transformed components Y?

Decorrelation Example

Example: consider a source $X_n=\rho X_{n-1}+\sqrt{1-\rho^2\mathcal{N}(0,\sigma^2)}$, $X_0\sim\mathcal{N}(0,\sigma^2)$. We will work with blocks of 2, i.e. k=2.

Quiz-5: What is the eigenvalue-based transform at block-size k=2, transformed components Y?

$$T=U^T=rac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$
 and therefore $Y=TX=rac{1}{\sqrt{2}}egin{bmatrix}X_i+X_{i+1}\X_i-X_{i+1}\end{bmatrix}$

Decorrelation Example

Example: consider a source $X_n=\rho X_{n-1}+\sqrt{1-\rho^2}\mathcal{N}(0,\sigma^2)$, $X_0\sim\mathcal{N}(0,\sigma^2)$. We will work with blocks of 2, i.e. k=2.

$$Y=TX=rac{1}{\sqrt{2}}egin{bmatrix} X_i+X_{i+1}\ X_i-X_{i+1} \end{bmatrix}$$

Quiz-6: What is the 2×2 covariance matrix Σ of Y?

Decorrelation Example

Example: consider a source $X_n=\rho X_{n-1}+\sqrt{1-\rho^2}\mathcal{N}(0,\sigma^2)$, $X_0\sim\mathcal{N}(0,\sigma^2)$. We will work with blocks of 2, i.e. k=2.

Quiz-6: What is the 2 imes 2 covariance matrix Σ_Y of Y?

$$\Sigma_Y = egin{bmatrix} (1+
ho) & 0 \ 0 & (1-
ho) \end{bmatrix} \sigma^2$$
 , i.e. Y_1 and Y_2 are uncorrelated!

Moreover, the variances of Y_1 and Y_2 are such that Y_1 has higher variance than Y_2 . This is the energy compaction property of the transform. (recall: water-filling!)

Karhunen-Loeve Transform (KLT)

- We looked into what is called the Karhunen-Loeve Transform (KLT) in signal processing.
- The KLT is the eigenvalue-based linear transform.
- The KLT is the *optimal* transform for a given covariance matrix Σ (without proof).
 - By optimal, we mean it in the sense that it maximally reduces the correlation between the transformed components.
 - The components have the property that they are uncorrelated and ordered in decreasing order of variance.
- Useful for many applications: often used for data compression, dimensionality reduction, and feature extraction in various fields, including image and signal processing.

Transform Coding + KLT

• We looked into one specific transform, the KLT, which is an orthonormal matrix and allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X?

Transform Coding + KLT

• We looked into one specific transform, the KLT, which is an orthonormal matrix and allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X?

For MSE distortion, we can allocate bits to the transformed components Y in a more-efficient manner, i.e., allocate more bits to the components with higher energy. (recall: thumb-rule!)

Transform Coding Notebook

https://colab.research.google.com/drive/1ZcnjlcoOHEbiTQWvcpiPYA9HbtfB829x?usp=sharing

Transform Coding Performance on our Example

Example: consider a source $X_n =
ho X_{n-1} + \sqrt{1ho^2} \mathcal{N}(0,\sigma^2)$

Transform Coding Performance on our Example

Example: consider a source $X_n =
ho X_{n-1} + \sqrt{1ho^2} \mathcal{N}(0,\sigma^2)$

Transform Coding Performance on our Example

Example: consider a source $X_n =
ho X_{n-1} + \sqrt{1ho^2} \mathcal{N}(0,\sigma^2)$

Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?

Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice? Ans:

- ullet KLT is dependent on statistics of input data X!
 - \circ KLT is optimal for a given covariance matrix Σ .
 - \circ In practice, we do not know Σ and need to estimate it from data.
 - \circ Moreover, data in real-life is not stationary, i.e., statistics change over time. Need to re-estimate Σ .
 - Therefore, in practice, KLT is computationally expensive!

Next class we will see other *fixed* orthonormal transforms which are more practical such as DCT, DFT, wavelets, etc.