Learned Image Compression

L16, EE274, Fall 23

Slides Credit: Kedar Tatwawadi

Recap: What is an image?

Array of pixels: (Height, Width, Channels)

8 bits

24 bits / pixel

- 8 bits

3 bytes / pixel

8 bits

Recap: Image Compression

764x512x3 bytes
=1.1MB!
(Uncompressed)

Image from Kodak dataset

Recap: Image Compression -> JPEG 40x

Uncompressed -> 1.1MB
JPEG ->

Image from Kodak dataset

Recap: Image Compression -> JPEG 80x

Uncompressed -> 1.1MB
JPEG ->

Image from Kodak dataset

Recap: Image Compression -> JPEG 137X

Uncompressed -> 1.1MB
JPEG ->

Image from Kodak dataset

Recap: Image Compression -> BPG

Uncompressed -> 1.1MB
BPG ->

Image from Kodak dataset

Quiz Q1

Q1 Image Compression
4 Points

Before the next big game, facing an inevitable loss, Berkeley students
hacked into Stanford website and tried to mutilate the Stanford logo
into a Berkeley blue color version (but did a bad job at it). The
mutilated logo is shown as an image above.

This image is of dimensions 370 x 370, and contains 4 channels
(RGBA) instead of 3 channels for colors we saw in class. The fourth
channel is alpha channel which tells the transparency of the image.
The bit-depth of this image is 8, which basically implies that every
pixel in each channel is 8 bits.

This file can be compressed losslessly using PNG to ~ 14.3 KB (kilo-
bytes).

Q1.1 What's the expected raw size of this image?
Ans: 370 x 370 x (24+8) bits = 370 x 370 x (3+1) bytes = 547.6 KB

Q1.2 In this image you can see that there are basically just two colors
(white and a bad version of Berkeley blue color). What will be the
expected image size if we use only 2 colors to compress this image in
KB?

Ans: 370 x 370 x (1+8) bits = 154.012 KB

Q1.3 Now you also see that along with having just 2 colors, the image
also has only two levels of transparency (perfectly transparent and
perfectly opaque). Using these properties what will be the expected image
size in KB?

Ans: 370 x 370 x (1+1) bits = 34.225 KB

Q1.4 PNG seems to perform better than even using 1 bit for color and 1
bit for alpha!

Ans: Better entropy coding!

PNG performs better because it also uses a version of LZ77 to look for
matching pixels and store match length/offset pairs, rather than each pixel
individually. Because this image has a lot of redundancy, there are
probably many matches LZ77 can identify.

Quiz Q2

Q2 JPEE274G Compressor Q2.1
4 Points 2 Points

Q2.2
2 Points

JPEE274G decided to use prediction of blocks based on previously
encoded neighbors. In which of the following two images do we
expect the prediction to help the most.

Riding on the compute revolution, JPEE274G decided to go for 64 X

EE274 students decided to come together and form JPEE274G (Joint
64 block size instead of 8 x 8.

Photographers EE 274 Group) coming up with an image compressor

with the same name. Help them make the design decisions.
Suppose you have the same image at resolution 480 x 480, 720 X

720, 1080 x 1080

Hﬁ'(nw_w / DK

In which of the following case do we expect increasing the block-size
help the the most.

@® 1080 x 1080

Ideas:

Higher resolution same image => less correlation between neighboring
pixels => need to increase block size

2. More homogenous blocks => better predictive coding using previous
blocks => more savings

® Charizard (the one with the orange cranky being)

Quiz Q3

Q3 Predictive Coding

2 points

Q1.1 What's the absolute value of the reconstruction
You find a source where consecutive values . | . error ‘Xn I Xn ‘ for the |aSt Symbor)

are very close, so you decide to do predictive . . . Ans "
lossy compression. Encoder works in A

following fashion: it first transmits the first X6 — 2 . 9 ; X6 — 2 .4 => error = O i 5
symbol and after that it quantizes the error

based on prediction from last encoded

symbol. The quantized prediction error is

transmitted.

Formally, suppose X1, Xo,...isyour
original sequence and X1, X2, ... isthe
reconstruction sequence. Then we have:

for the first symbol the reconstruction Xl = X,

i.e., you are losslessly encoding the first symbol
prediction for X, is simply X,,_;

prediction erroris e, = Xp — X,y Q1.2 Given the transmitted sequence

quantized prediction error is é,

reconstructionfoanian=Xn_1-I-én Xl, é\z, é\3, o o o — 1.1,0,1, - 1,2, - 1, What IS the flnal

the transmitted sequence is X1, é,, €3, . . .

For this question, assume that the deCOd ed Value Of X6?

quantization for the prediction error is Ans .
simply integer floor.

1.1+0+1+0-1+2-1=2.1

Example encoding for source sequence:
0.4,1.1,1.5,0.9,2.1,2.9

Recap: Image Compression -> JPEG 137X

Uncompressed -> 1.1MB
JPEG ->

Image from Kodak dataset

Recap: Image Compression -> BPG

Uncompressed -> 1.1MB
BPG ->

Image from Kodak dataset

Recap: HIFIC -> ML-based image compression

Uncompressed -> 1.1MB
BPG ->

Image from Kodak dataset

Recap: JPEG

Color treatment J PEG EnCOdeI‘

r .

How can we improve further?

Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of DCT, DWT
etc. can we obtain better performance with non-linear transforms

N N
c c
= O
)] 0
- -
))
£ =
T e
))
O O
- —
> >
o o
) 0

source dimension 1 source dimension 1

Fig. 1. Linear transform code (left), and nonlinear transform code (right) of a banana-shaped source distribution, both obtained by empirically minimizing the
rate—distortion Lagrangian (eq. (13)). Lines represent quantization bin boundaries, while dots indicate code vectors. While LTC is limited to lattice quantization,
NTC can more closely adapt to the source, leading to better compression performance (RD results in fig. 3; details in section III).

Ballé, Johannes, et al. "Nonlinear transform coding." IEEE Journal of Selected Topics in Sighal Processing 15.2 (2020): 339-353.

What next?

Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of DCT, DWT
etc. can we obtain better performance with non-linear transforms

End-to-End RD Optimization: JPEG uses very smart albeit heuristics for R-D
optimization, e.g. rate needs to be shared between different channels. Can we
make R-D decisions end-to-end?

Recent Learned Image/Video Codec Works

> Learned Image Compression:

Lu, 2021], [Ma et al, 2021], [Yang et al, NIPS2021],

> Learned Video Compression

Rippel et al ICCV19], [Hu et al, 2020], [Agustsson

> The CLIC Challenge

“Challenge on Learned Image Compression”

‘Toderici, CVPR15], [Theis, ICLR17], [Agustsson, NIPS1/], [Baig, NIPS17],
Balle, ICLR17], [Rippel, ICML17], [Balle, ICLR18], [Johnston, CVPR18],
‘Mentzer, CVPR18], [Choi, ICLR19], [Balle, ICLR19], [Lee, ICLR19], [Mentzer, CVPR19]

‘Mentzer et al. NIPS2021]. ..

‘Wu. et al, ECCV18], [Lu et al, CVPR19], [Cheng et al, CVPR19]

et al. 2020], [Golinski et al. 2020]

Habiban et al.2019], [Lu et al. 2020], [Liu el.al.2020], [DVC, Lu et al. 2019]. ..

-> ongoing image compression contest at Data Compression Conference

Lots of interesting works!
Our Goal: Understand the Key concepts

ML 101 Review

> Data: (X, y)
> Non-linear Model and Differentiable Architectures: f (X; 0)
> Loss Function: loss(y, V)

IR ——
S

ML 101 Review

» Use back-propagation/agradients to “learn” (update) model parameters (/
- Does this by taking gradients (back-propagation) of loss (y, 1 (X; 6’)) wrt

—

Bl %0 ——emi o)
RS

ML 101 Review

» Uses to learn the model parameters ' for optimizing a
» Does this by taking of wrt

~ Advantage over standard models:
>~ Allows optimizing any objective function loss as long as Is differentiable!
- doesn’t play well with discrete distributions
~ Allows stacking of non-linear layers (linear layer + non-linearity)
>~ recall stacking of linear layers is not so-powerful: ABC...= D it ABCD are matrices

Va\

X —— f(X0 —»loss (y, f(X; 6))

?

Y

For more details check out CS231N course notes: https://cs231n.github.io/

ML 101 Review: Auto-encoder architecture

Reconstructed

|deally they are identical. input

X ~ x’

Bottleneck!

Encoder Decoder
9¢ fo

An compressed low dimensional
representation of the input.

https://lilianweng.github.io/posts/2018-08-12-vae/

The Image Compression Problem

Encoder

|
|

bits

Target
reconst

Goal: min d(/, i)
L(bits)<B %

e
e
v

Rate . Distortion

Traditional Image Codecs

I Encoding proceeds in 3 steps:
|’
Target
Image

CAUTION: Simplified framework

Traditional Image Codecs

I Encoding proceeds in 3 steps:
7 > DCT Transform:
| —_— Linear transform to decorrelate the pixels
Target
Image

CAUTION: Simplified framework

Traditional Image Codecs

Encoding proceeds in 3 steps:

> DCT Transform:

|’ —_— _Z, a» 2 Linear transform to decorrelate the pixels

> Quantize -> Loss of precision
Target 0([2.3,3.7]) = [2,4]

Image

CAUTION: Simplified framework

Traditional Image Codecs

Encoding proceeds in 3 steps:

> DCT Transform:

|’ —_— _Z, a» 2 Linear transform to decorrelate the pixels

> Quantize -> Loss of precision
Q([2.3,3.7]) = [2,4]

Target =
Image Arithmetic |G- > Arithmetic/Huffman -> Lossless Compression
Encoding - In the simplest form, uses a discrete distribution
P(2) to encode Z into a bitstream of length
log —— = L(bits) bits .
A L(bits) ~ log —
P(Z) P(Z)

CAUTION: Simplified framework

Traditional Image Codecs

Target
|
Arithmetic u Arithmetic reconst
: —_— B —))
Encoding m Decoding
log —— =~ L(bits) bits
P(2)

Goal: min d(/, f)
L(bits)<B

Traditional Image Codecs

Target
|
Arithmetic u Arithmetic reconst
: —_— B —))
Encoding m Decoding
log —— =~ L(bits) bits
P(2)

Goal: min d(/, f)
L(bits)<B

decs
arned Image Co
Le

/\
orks

d-Forward Netw
Feed-

Deep

ll

Target
reconst
- Arithmetic
_ B —p
.
ing
Encodin
bits
~ L(bits)
log

P(2)

Learned Image Codecs

Deep Feed-Forward Networks A

Target
. — —
Encoding
lo — ~ L(bits) bits
PG

Question: How do we train the parameters?

Learned Image Codecs

Deep Feed-Forward Networks A

Target
. — —
Encoding
lo — ~ L(bits) bits
PG

Loss Function = L(bits) + Ad(I,)

R 4

“
2
 J
 J
“
\d

Learned Image Codecs

Deep Feed-Forward Networks A

Target
. — —
Encoding
lo — ~ L(bits) bits
PG

“
2
 J
 J
“
\d

Learned Image Codecs

Target

Probability 1 . reconst
Model

discrete prob P(5
»
distribution (Z)

| n
L = tion= lo — Ad(L, 1)
0SS Function g P(2)

Learned Image Codecs

Target
Probability 1 . reconst
Model

discrete prob P(5
»
distribution (Z)

| n
L = tion= lo — Ad(L, 1)
0SS Function g P(2)

Learned Image Codecs

/
Z A
| — — — £ Quantizer -> Q([2.3,3.7]) = [2,4]

Target
Image

| .
Loss Function = log PG + Ad(1, I)

Learned Image Codecs

/
Z A
|’ — e —>—> < > Quantizer > 0([2.3,3.7]) = [2,4]

> Workaround-1: model the quantizer

Target as adding noise during training
Image A
J =24 €, where e ~ U(-0.5,0.5)

| .
Loss Function = log PG + Ad(1, I)

Learned Image Codecs

/
Target
Image

> Workaround-1: model the quantizer

e $ A
_> —~< > Quantizer -> 0([2.3,3.7]) = [2,4]
€

as adding noise during training

2 =27+ ¢€,where e ~ U(=0.5,0.5)

| .
Loss Function = log PG + Ad(1, I)

Learned Image Codecs

Target
Probability 1 . reconst
Model

discrete prob P(5
»
distribution (Z)

| n
L = tion= lo — Ad(L, 1)
0SS Function g P(2)

Learned Image Codecs

oP(2) .
. — is not defined!
0Z

/
|’ . @ ~0-2
Target l

- 1
Image Probability — |log
Model P(2)

discrete prob _ 2
distribution P()

| R
L = tion= lo — ﬂd([, I)
0SS Function g P(%)

Learned Image Codecs

[OP(2) |
. — is not defined!
0Z

O -0-:
| — > — — <

l > ldea: Parametrize P(Z) using a

Target density function (for ex: #(0,1))

Image

PrObablllty — log P(Z\) — CDF(2 + 05) — CDF(Z\ — 05)
Model P(2)

discrete prob _ 2
distribution P()

| .
Loss Function = log PG + Ad(1, I)

Learned Image Codecs

oP(2) . .
. — Is not defined!
0Z

> ldea: Parametrize P(Z) using a

density function (for ex: #(0.1))
P(z2) = CDF(z+0.5) — CDF(z — 0.5)

P(Z) = GaussCDF(Z + 0.5) — GaussCDF(Z — 0.5)

Learned Image Codecs

P(Z) = GaussCDF(Z + 0.5) — GaussCDF(Z — 0.5)

oP(2)

> 82

IS not defined!

> ldea: Parametrize P(Z) using a

density function (for ex: #(0.1))
P(z2) = CDF(z+0.5) — CDF(z — 0.5)

> Gradient is now well defined!

0P(2)

02

— PDF(3

0.5) — PDF(Z —0.5)

Learned Image Codecs

oP(2) .
. — is not defined!
0Z

/
j— o o

l > ldea: Parametrize P(Z) using a

Target
Image

density function (for ex: .#(0,1))

- 1
Probability —» |log P(Z) = CDF(2+0.5) — CDF(z - 0.5)
Model P(2)

discrete prob _ P(%)

cistribution > Gradient is now well defined!
0P(7
a(f) — PDF(¢ + 0.5) — PDF(¢ — 0.5)
<

| .
Loss Function = log PG + Ad(1, I)

End-to-End Learned Image Codec

Target

Probability 1 . reconst
Model

P(?) = GaussCDF(Z + 0.5)
—GaussCDF(Z —0.5)

Possible to train end-to-end!

| R
L = tion= lo — /ld(l, I)
0SS Function g P(Z)

Example -> MNIST

Learned Image Codecs

/ I
’ . @ £ @ . ’ No hand-tuning parameters
| Can “learn” the parameters

Reconst

Target

ors]
Model P(2)

discrete prob _ P(ﬁ)
distribution

| R
Loss Function = log —— + Ad(I,])
0SS Function g P(Z)

Possible to train end-to-end!

ML Offers Adaptivity Not Possible With Traditional Codecs

Domain-aware Content-aware Task-aware

Task: Face

Recognition

Deprioritize shrubbery

Computation on compressed

Custom codec for each domain Focus on areas of high importance :
representation

Learned Image Codecs

| |
< @ ’ | No hand-tuning parameters
Can “learn” the parameters
Target Reconst
Image Probability B N : . . .
e M | Better distortion-Model separation
discrete prob . p(%) Easy to tune model to different distortion metrics

distribution

| R
Loss Function = 10 F AL, 1
unction g PG (I, 1)

Possible to train end-to-end!

Given source image
(@) which of the

following images do
you prefer visually?

(b), (c), (d), (e), (T)

Given source image
(@) which of the
following images
does a compressor
with MSE distortion
prefer?

(b), (c), (d), (e), (1)

Design Decisions: (i) Backbones

Target
reconst

~ Question: How can the same model work for any image sizes?

Design Decisions: (i) Backbones

Target
reconst

~ Question: How can the same model work for any image sizes?

- Only use Cony, Deconv ... (ho Fully Connected Layers)

Design Decisions: (i) Backbones

Target
reconst

> Other Improvements:

- Multiscale Encoder/Decoder: [Rippel et. al. 2018]
- using GDN non-linearity: [Balle, 2017/18]

Design Decisions: (ii) Probability Model

Target
Probability 1 . reconst
Model
P(3) ~ #(0,1)

Design Decisions: (ii) Probability Model

|’ —_— e _Z>a_, 2 > More complex Probability models

l - PDF(Z;) — N (u;, 0;),

Target i.e: u, o are different per element of Z

Image Probability - Need to now encode i, o tensors:
Model

_ /—/ ; h
P(2) ~ #(0,1) yperprior approac
[Balle, ICLR18]

Target
reconst

(i) Probability Model

Design Decisions

(&}
Y

J

input image
| conv Nx5x5/2 |
| conv Nx5x5/2| \
[conv Nx5x5/2] |
| conv Mx5x5/2/ |
|
[\ conv Nx3x3/1 \
[conv Nx5x5/2] \
| conv Nx5x5/2]]

|

(@]
(7
-
0

|

Variational image compression with a scale hyperprior
Balle et.al. 2018

|

x
| conv 3x5x5/21 |
| conv Nx5x5/21 |
| conv Nx5x5/21 |
| conv Nx5x5/21 |
ReLU
| conv Mx3x3/1 |
| conv Nx5x5/21 |
| conv Nx5x5/21 |

c
O
-+

O

-

| -

-+

o

c

O

O

)

| W

Figure 4: Network architecture of the hyperprior model. The left side shows an image autoen-
coder architecture, the right side corresponds to the autoencoder implementing the hyperprior. The
factorized-prior model uses the identical architecture for the analysis and synthesis transforms g,
and gs. Q represents quantization, and AE, AD represent arithmetic encoder and arithmetic decoder,
respectively. Convolution parameters are denoted as: number of filters X kernel support height X
kernel support width / down- or upsampling stride, where 71 indicates upsampling and | downsam-
pling. NV and M were chosen dependent on A\, with NV = 128 and M = 192 for the 5 lower values,

and N = 192 and M = 320 for the 3 higher values.

Design Decisions

(i) Probability Model

.l L: Fl IE _N

Figure 2: Left: an image from the Kodak dataset. Middle left: visualization of a subset of the latent
representation y of that image, learned by our factorized-prior model. Note that there is clearly
visible structure around edges and textured regions, indicating that a dependency structure exists
in the marginal which is not represented in the factorized prior. Middle right: standard deviations
o of the latents as predicted by the model augmented with a hyperprior. Right: latents y divided
clementwise by their standard deviation. Note how this reduces the apparent structure, indicating
that the structure is captured by the new prior.

Design Decisions: (i) Probability Model

D Encoder Network
p=00=1) |

AE . Decoder Network

Arithmetic
Encoder / Decoder

Latent
N Representation

Probability
Estimation Network

wojsuels |
sISayuAs

Hyper-hyper-prior models:
https://huzi96.github.io/coarse-to-fine-compression.html

Benchmarks

ELIC (ours) — Ballé2018

Cheng2020[P] -=-= VVC/VTM

Minnen2020 BPG (4:4:4)
—— Minnen2018[P] JPEG

03 04 05 0.6 0.7 0.8 0.9 1.0
Bits Per Pixel ELIC: Efficient Learned Image Compression with Unevenly Grouped

Space-Channel Contextual Adaptive Coding
He et.al. 2022

ELIC (ours) -=-= VVC/VNTM
Cheng2020[P] --- BPG (4:4:4)
Minnen2018[P] JPEG

—— Ballé2018

0
T
=
=
m,
¢
)
>

0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
Bits Per Pixel

Figure 9. Rate-distortion curves of various image compression ap-
proaches. The results are evaluated on Kodak. All shown learned
models are optimized for minimizing MSE.

Benchmarks

PSNR on Kodak

Ours (MT)
Ours (M2T)
ELIC (He '22)

ContextFormer
(Koyuncu '22)

Devil-Details (Zou '22)
VTM
Entroformer (Qian '22)
Cheng 20 Mentzer et.al. 2023
- CHARM (Minnen '20)
- Checkerboard (He '21)
MIM (El-Nouby '22)
BPG
JPEG

M2T: Masking Transformers Twice for Faster Decoding

26

0.1 0.2 bpp 0.3 0.4 0.5

Figure 1: Rate distortion results on Kodak. Our MT out-
performs the prior state-of-the-art ELIC [18]; M2T only 1n-
curs a small reduction 1n rate-distortion performance com-

pared to MT while running about 4 x faster on hardware
(see Fig. 4)

Issues: (i) Speed!

Decoding Runtime Breakdown

»
—
-
O

=
O

E

-—
C
-

i

e — :
EIC-PQE EIC-E2E-P neuro IMCL_IMG_MSSSIM MIATLSSIM | VIP-ICT-Codec

Slide from Dr. Toderici’s talk at CVPR20

Issues: (i) Speed!

> Design decisions: Need to choose frameworks, which aren’t fundamentally slow/causal

(eg: avoid autoregressive image compression methods)

Issues: (i) Speed!

> Design decisions: Need to choose frameworks, which aren’t fundamentally slow/causal

(eg: avoid autoregressive image compression methods)

> For example: [ELF-VC, Rippel et.al. 2021, ArXiv]

real-time HD 720 decode on mid-range GPU

- VGA 640x480: encode @ 47 FPS, decode @ 91 FPS
- HD 1280x720: encode @ 19 FPS, decode @ 35 FPS

Issues: (i) Speed!

> Design decisions: Need to choose frameworks, which aren’t fundamentally slow/causal

(eg: avoid autoregressive image compression methods)

> Faster Hardware: Hardware support for NN keeps improving year by year

Issues:

» MLPerf results available
Tech Giants/System

o |€ = TPU

Speed!

= Al-Benchmark results available

IC Vendor/Fabless

= Edge TPU
[| ‘

= NNP-I
(inteD)

= NNP-T/Myriad X/

Startup in China

Al Chip Landscape

adWs

= |nferentia

=Brainwave

SAMSUNG

QUALCO/WV\

NVIDIA.

EyeQ/Arria FPGA

= Exynos 9825

= Volta/Turing
/T4/Xavier/NVDLA

= Snapdragon 855

Cambricon
X R £ # B

BITMAIN

= MLU100/270/220
= Journey

= BM1682/1880

V0.7 Dec., 2019

Startup Worldwide

IP/Design Sevice

intellLdusion
= Cloud Al 100
AMDZ\

arm
| DEFINIX.
Graphcore
= DeepEye1000 = GC2
= QuestCore
= EPYC

| SYNoPsys
=

‘\

& XILINX.

= VERSAL

\(X

= N171
= Dimensity

th UNISOC
= Hanguang800

= TG6100N

s.habana KL

Imagination
= Gaudi = Goya
= Tiger T710

CEVA
| 0 N> technolog
| = GAINBOARD/
Lightspeeur :
= K210 b=y :
] Hai|0_8
artDSl-ln = AR9000
s
&,‘ ~ Ascend
HUAVTE' = Kirin
@ms"_”__a” = Hi35xx

Rackchip
T

/) blaize
= RK3399Pro

cadence
Xplorer X1000
= Voitist611
Ambarella
00 .
Bai W& Aol

Honghu

NationalChip
= FSD

= CV22S/25S

I:’ KALRAY
= MPPA2-256

@ SiFive

&8 LIGHTMATTER

= TX101/210/510
= GX8010

ARTERISIE
groq

= TAi8010
Tencent Bif

Hewlett Pack

Tachyum/
= HuaShan
Enterprise

brainchip
((Enflame
i3 TExas

a

(o)
FUJITSU

72
iINSpUr &

-
=3 Esperanto
= DTU
INSTRUMENTS
= DLU

/3R

= MemCore001
RENESAS

Rigferred (9 INNOGRIT
= MN-Core

= Shasta/Rainier/Tacoma

PEZY Computing
TOSHIBA

= PEZY-SC2

© BROADCOM'
GUC
\Y
= KL520 Q@ 2isToRMv
& Eta Compute
= ECM3531
= CI100X/110X
P ﬁ_*l]ﬁ;
Western Digital.

o)
NeuroBlade '
SPE3CH

Y Tens

19

= élchlp

Te Fl @

ensorFlow| ¥ R O e
NOKIA

@ &piaid

Compilers

&> FARADAY

More at https://basicmi.github.io/Al-Chip/

'h

nGraph

NVIDIA.

Benchmarks

The Tensor Algebra

Al - Benchmark
Compiler (taco)

NAVA
DBAIBESUKRKR Il" \’é}k&l IH' DAWNBenCh

All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date.

Issues: (i) Speed!

Qualcomm Hexagon

TOPS

) Determinism

(

Issue

ifferent hardware =>

D
d

Int iImplementation =>

iNg po
IC fa

ifferent float

llures

catastroph

Issues: (i) Determinism!

» Encoding/decoding must yield exactly the same outputs,

irrespective of hardware architecture

~ Floating point (FP32/16) models don’t work:

Model Quantization necessary [E.g: Ballé 2019]

Take-aways from Today

ML-based codecs allow for learned encoder-decoder transforms and therefore
(i) better fidelity to chosen probability model over latents => better rate-distortion
(if) allow for substituting distortion of the choice
(iif) domain adaptable and flexible
Main idea to achieve ML-based codec is to overcome (automatic) differentiation over
() quantization and (ii) discrete probability models

ML-based methods will likely form the basis of future compression

