
s

Learned Image Compression

L16, EE274, Fall 23

Slides Credit: Kedar Tatwawadi

Recap: What is an image?
Array of pixels: (Height, Width, Channels)

Recap: Image Compression

Image from Kodak dataset

764x512 764x512x3 bytes
= 1.1MB!
(Uncompressed)

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 27KB (~40X!)

Recap: Image Compression -> JPEG 40x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 14KB (~80X!)

Recap: Image Compression -> JPEG 80x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 8KB (~137X!)

Recap: Image Compression -> JPEG 137x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
BPG -> 8KB (~137X!)

Recap: Image Compression -> BPG

Quiz Q1
Q1.1 What's the expected raw size of this image?
Ans: 370 x 370 x (24+8) bits = 370 x 370 x (3+1) bytes = 547.6 KB
Q1.2 In this image you can see that there are basically just two colors
(white and a bad version of Berkeley blue color). What will be the
expected image size if we use only 2 colors to compress this image in
KB?
Ans: 370 x 370 x (1+8) bits = 154.012 KB
Q1.3 Now you also see that along with having just 2 colors, the image
also has only two levels of transparency (perfectly transparent and
perfectly opaque). Using these properties what will be the expected image
size in KB?
Ans: 370 x 370 x (1+1) bits = 34.225 KB

Q1.4 PNG seems to perform better than even using 1 bit for color and 1
bit for alpha!
Ans: Better entropy coding!
PNG performs better because it also uses a version of LZ77 to look for
matching pixels and store match length/offset pairs, rather than each pixel
individually. Because this image has a lot of redundancy, there are
probably many matches LZ77 can identify.

Quiz Q2

Ideas:

1. Higher resolution same image => less correlation between neighboring
pixels => need to increase block size

2. More homogenous blocks => better predictive coding using previous
blocks => more savings

Quiz Q3

Q1.1 What's the absolute value of the reconstruction
error for the last symbol?
Ans:

 => error = 0.5

|Xn − ̂Xn |

X6 = 2.9; ̂X6 = 2.4

Q1.2 Given the transmitted sequence
, what is the final

decoded value of ?
Ans:
1.1 + 0 + 1 + 0 -1 +2 -1 = 2.1

X1, ̂e2, ̂e3, … = 1.1,0,1, − 1,2, − 1
̂X6

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 8KB (~137X!)

Recap: Image Compression -> JPEG 137x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
BPG -> 8KB (~137X!)

Recap: Image Compression -> BPG

Recap: HiFiC -> ML-based image compression

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
BPG -> 8KB (~137X!)

Recap: JPEG

How can we improve further?

Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of DCT, DWT
etc. can we obtain better performance with non-linear transforms

Ballé, Johannes, et al. "Nonlinear transform coding." IEEE Journal of Selected Topics in Signal Processing 15.2 (2020): 339-353.

What next?

Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of DCT, DWT
etc. can we obtain better performance with non-linear transforms

End-to-End RD Optimization: JPEG uses very smart albeit heuristics for R-D
optimization, e.g. rate needs to be shared between different channels. Can we
make R-D decisions end-to-end?

Recent Learned Image/Video Codec Works
‣ Learned Image Compression:

[Toderici, CVPR15], [Theis, ICLR17], [Agustsson, NIPS17], [Baig, NIPS17],
[Balle, ICLR17], [Rippel, ICML17], [Balle, ICLR18], [Johnston, CVPR18],
[Mentzer, CVPR18], [Choi, ICLR19], [Balle, ICLR19], [Lee, ICLR19], [Mentzer, CVPR19]
[Lu, 2021], [Ma et al, 2021], [Yang et al, NIPS2021], [Mentzer et al. NIPS2021] . . .

‣ Learned Video Compression
[Wu. et al, ECCV18], [Lu et al, CVPR19], [Cheng et al, CVPR19]
[Rippel et al ICCV19], [Hu et al, 2020], [Agustsson et al. 2020], [Golinski et al. 2020]
[Habiban et al.2019], [Lu et al. 2020], [Liu el.al.2020], [DVC, Lu et al. 2019] . . .

‣ The CLIC Challenge
“Challenge on Learned Image Compression”
-> ongoing image compression contest at Data Compression Conference

Our Goal: Understand the Key concepts
Lots of interesting works!

ML 101 Review

‣ Data:
‣ Non-linear Model and Differentiable Architectures:

‣ Loss Function:

(X, y)
f (X; θ)

loss(y, ̂y)

X f (X; θ)

y

loss(y, ̂y)̂y

ML 101 Review

‣ Use back-propagation/gradients to “learn” (update) model parameters
‣ Does this by taking gradients (back-propagation) of wrt

θ
loss (y, f (X; θ)) θ

X f (X; θ)

y

loss (y, f (X; θ))̂y

θn = θn−1 − ∇θ(loss (y, f (X; θ)))

minθ loss (y, f (X; θ))

ML 101 Review
‣ Uses data to learn the model parameters for optimizing a
‣ Does this by taking gradients (back-propagation) of wrt
‣ Advantage over standard models:
‣ Allows optimizing any objective function loss as long as is differentiable!
‣ doesn’t play well with discrete distributions

‣ Allows stacking of non-linear layers (linear layer + non-linearity)
‣ recall stacking of linear layers is not so-powerful: ABC…= D if ABCD are matrices

θ loss(⋅)
loss (y, f (X; θ)) θ

f (⋅ ; θ)

X f (X; θ)

y

loss (y, f (X; θ))̂y

For more details check out CS231N course notes: https://cs231n.github.io/

ML 101 Review: Auto-encoder architecture

https://lilianweng.github.io/posts/2018-08-12-vae/

The Image Compression Problem

Target
Image

I ̂I

Target
reconst

bits

min
L(bits)≤B

d(I, ̂I)Goal:

Encoder Decoder

Rate Distortion

Target
Image

DCT Q

Arithmetic
Encoding

Target
reconst

I-DCT

Arithmetic
Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

min
L(bits)≤B

d(I, ̂I)Goal:

 Encoding proceeds in 3 steps:

‣ DCT Transform:
Linear transform to uncorrelate the pixels

‣ Quantize -> Loss of precision

‣ Arithmetic Coding -> Lossless Compression
In the simplest form, uses a discrete distribution
 to encode into a bitstream of length

Q([2.3,3.7]) = [2,4]

̂z
bits

L(bits) ≈ log
1

P(̂z)

P(̂z)

CAUTION: Simplified framework

Traditional Image Codecs

Target
Image

DCT Q

Arithmetic
Encoding

Target
reconst

I-DCT

Arithmetic
Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

min
L(bits)≤B

d(I, ̂I)Goal:

 Encoding proceeds in 3 steps:

‣ DCT Transform:
Linear transform to decorrelate the pixels

‣ Quantize -> Loss of precision

‣ Arithmetic Coding -> Lossless Compression
In the simplest form, uses a discrete distribution
 to encode into a bitstream of length

Q([2.3,3.7]) = [2,4]

̂z
bits

L(bits) ≈ log
1

P(̂z)

P(̂z)

CAUTION: Simplified framework

Traditional Image Codecs

Target
Image

DCT Q

Arithmetic
Encoding

Target
reconst

I-DCT

Arithmetic
Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

min
L(bits)≤B

d(I, ̂I)Goal:

 Encoding proceeds in 3 steps:

‣ DCT Transform:
Linear transform to decorrelate the pixels

‣ Quantize -> Loss of precision

‣ Arithmetic Coding -> Lossless Compression
In the simplest form, uses a discrete distribution
 to encode into a bitstream of length

Q([2.3,3.7]) = [2,4]

̂z
bits

L(bits) ≈ log
1

P(̂z)

P(̂z)

CAUTION: Simplified framework

Traditional Image Codecs

Target
Image

DCT Q

Arithmetic
Encoding

Target
reconst

I-DCT

Arithmetic
Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

min
L(bits)≤B

d(I, ̂I)Goal:

 Encoding proceeds in 3 steps:

‣ DCT Transform:
Linear transform to decorrelate the pixels

‣ Quantize -> Loss of precision

‣ Arithmetic/Huffman -> Lossless Compression
In the simplest form, uses a discrete distribution
 to encode into a bitstream of length

Q([2.3,3.7]) = [2,4]

̂z
bits

L(bits) ≈ log
1

P(̂z)

P(̂z)

CAUTION: Simplified framework

Traditional Image Codecs

Traditional Image Codecs

Target
Image

DCT Q

Arithmetic
Encoding

Target
reconst

I-DCT

Arithmetic
Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

min
L(bits)≤B

d(I, ̂I)Goal:

Traditional Image Codecs

Target
Image

DCT Q

Arithmetic
Encoding

Target
reconst

I-DCT

Arithmetic
Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

min
L(bits)≤B

d(I, ̂I)Goal:

Learned Image Codecs

E D

Target
Image

Q

Arithmetic
Encoding

Target
reconstArithmetic

Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

Deep Feed-Forward Networks

Learned Image Codecs

E D

Target
Image

Q

Arithmetic
Encoding

Target
reconstArithmetic

Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

Question: How do we train the parameters?

Deep Feed-Forward Networks

Learned Image Codecs

E D

Target
Image

Q

Arithmetic
Encoding

Target
reconstArithmetic

Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

Loss Function = L(bits) + λd(I, ̂I)

Deep Feed-Forward Networks

Rate

Learned Image Codecs

E D

Target
Image

Q

Arithmetic
Encoding

Target
reconstArithmetic

Decoding

z ̂z ̂z

bits

I ̂I

log
1

P(̂z)
≈ L(bits)

Loss Function = L(bits) + λd(I, ̂I) ≈ log
1

P(̂z)
+ λd(I, ̂I)

Rate

Deep Feed-Forward Networks

Learned Image Codecs

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

E D

Target
Image

Q

Target
reconst

z ̂z ̂z

I ̂I

Probability
Model

P(̂z)discrete prob
distribution

log
1

P(̂z)
≈ L(bits)

Learned Image Codecs

E D

Target
Image

Q

Target
reconst

z ̂z ̂z

I ̂I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Probability
Model

P(̂z)discrete prob
distribution

log
1

P(̂z)
≈ L(bits)

Learned Image Codecs

E

Target
Image

Q
z ̂z

I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

‣ Quantizer -> Q([2.3,3.7]) = [2,4]

Learned Image Codecs

E

Target
Image

Q
z ̂z

I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

‣ Quantizer ->

‣ Workaround-1: model the quantizer

as adding noise during training

, where

Q([2.3,3.7]) = [2,4]

̂z = z + ϵ ϵ ∼ U(−0.5,0.5)

Learned Image Codecs

E

Target
Image

z ̂z

I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

‣ Quantizer ->

‣ Workaround-1: model the quantizer

as adding noise during training

, where

Q([2.3,3.7]) = [2,4]

̂z = z + ϵ ϵ ∼ U(−0.5,0.5)

+

ϵ

Learned Image Codecs

E D

Target
Image

Q

Target
reconst

z ̂z ̂z

I ̂I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Probability
Model

P(̂z)discrete prob
distribution

log
1

P(̂z)
≈ L(bits)

Learned Image Codecs

E

Target
Image

Q
z ̂z

I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Probability
Model

P(̂z)discrete prob
distribution

log
1

P(̂z)

‣ is not defined!

‣ Idea: Parmetrize using a density

function (for ex:)

‣ Gradient is now well defined!

∂P(̂z)
∂ ̂z

P(̂z)

P(̂z) = CDF(̂z + 0.5) − CDF(̂z − 0.5)

∂P(̂z)
∂ ̂z

= PDF(̂z + 0.5) − PDF(̂z − 0.5)

𝒩(0,1)

Learned Image Codecs

E

Target
Image

Q
z ̂z

I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Probability
Model

P(̂z)discrete prob
distribution

log
1

P(̂z)

‣ is not defined!

‣ Idea: Parametrize using a

density function (for ex:)

‣ Gradient is now well defined!

∂P(̂z)
∂ ̂z

P(̂z)

P(̂z) = CDF(̂z + 0.5) − CDF(̂z − 0.5)

∂P(̂z)
∂ ̂z

= PDF(̂z + 0.5) − PDF(̂z − 0.5)

𝒩(0,1)

Learned Image Codecs

‣ is not defined!

‣ Idea: Parametrize using a

density function (for ex:)

‣ Gradient is now well defined!

∂P(̂z)
∂ ̂z

P(̂z)

P(̂z) = CDF(̂z + 0.5) − CDF(̂z − 0.5)

∂P(̂z)
∂ ̂z

= PDF(̂z + 0.5) − PDF(̂z − 0.5)

𝒩(0,1)

P(̂z) = GaussCDF(̂z + 0.5) − GaussCDF(̂z − 0.5)

Learned Image Codecs

‣ is not defined!

‣ Idea: Parametrize using a

density function (for ex:)

‣ Gradient is now well defined!

∂P(̂z)
∂ ̂z

P(̂z)

P(̂z) = CDF(̂z + 0.5) − CDF(̂z − 0.5)

∂P(̂z)
∂ ̂z

= PDF(̂z + 0.5) − PDF(̂z − 0.5)

𝒩(0,1)

P(̂z) = GaussCDF(̂z + 0.5) − GaussCDF(̂z − 0.5)

Learned Image Codecs

E

Target
Image

Q
z ̂z

I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Probability
Model

P(̂z)discrete prob
distribution

log
1

P(̂z)

‣ is not defined!

‣ Idea: Parametrize using a

density function (for ex:)

‣ Gradient is now well defined!

∂P(̂z)
∂ ̂z

P(̂z)

P(̂z) = CDF(̂z + 0.5) − CDF(̂z − 0.5)

∂P(̂z)
∂ ̂z

= PDF(̂z + 0.5) − PDF(̂z − 0.5)

𝒩(0,1)

End-to-End Learned Image Codec

E D

Target
Image

Q

Target
reconst

z ̂z ̂z

I ̂I

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Probability
Model

P(̂z) = GaussCDF(̂z + 0.5)
−GaussCDF(̂z − 0.5)

log
1

P(̂z)
≈ L(bits)

Possible to train end-to-end!

Example -> MNIST

https://colab.research.google.com/drive/1O3eQAaxlyLYI1HO7K1b12eJQsQKxjWwx?usp=sharing

Learned Image Codecs

No hand-tuning parameters
Can “learn” the parameters

E D

Target
Image

Q

Reconst

z ̂z ̂z

I ̂I

Probability
Model

P(̂z)discrete prob
distribution

log
1

P(̂z)
≈ L(bits)

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Possible to train end-to-end!

ML Offers Adaptivity Not Possible With Traditional Codecs

Content-aware

Focus on areas of high importance

Deprioritize shrubbery

Focus on
faces and text

Task-aware

Computation on compressed
representationCustom codec for each domain

Domain-aware
Task:

Watch Tennis!

Task: Face

Recognition

Learned Image Codecs

No hand-tuning parameters
Can “learn” the parameters

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Better distortion-Model separation
Easy to tune model to different distortion metrics

Possible to train end-to-end!

E D

Target
Image

Q

Reconst

z ̂z ̂z

I ̂I

Probability
Model

P(̂z)discrete prob
distribution

log
1

P(̂z)
≈ L(bits)

Loss Function = log
1

P(̂z)
+ λd(I, ̂I)

Given source image
(a) which of the
following images do
you prefer visually?

(b), (c), (d), (e), (f)

 
Given source image
(a) which of the
following images
does a compressor
with MSE distortion
prefer?

(b), (c), (d), (e), (f)

Design Decisions: (i) Backbones

E D

Target
Image

Q

Target
reconst

z ̂z ̂z

I ̂I

log
1

P(̂z)
+ λd(I, ̂I)

Probability
Model

P(̂z) = GaussCDF(̂z + 0.5)
−GaussCDF(̂z − 0.5)

log
1

P(̂z)
≈ L(bits)

‣ Question: How can the same model work for any image sizes?

Design Decisions: (i) Backbones

E D

Target
Image

Q

Target
reconst

z ̂z ̂z

I ̂I

log
1

P(̂z)
+ λd(I, ̂I)

Probability
Model

P(̂z) = GaussCDF(̂z + 0.5)
−GaussCDF(̂z − 0.5)

log
1

P(̂z)
≈ L(bits)

‣ Question: How can the same model work for any image sizes?

- Only use Conv, Deconv … (no Fully Connected Layers)

Design Decisions: (i) Backbones

E D

Target
Image

Q

Target
reconst

z ̂z ̂z

I ̂I

‣ Other Improvements:

- Multiscale Encoder/Decoder: [Rippel et. al. 2018]

- using GDN non-linearity: [Balle, 2017/18]

Design Decisions: (ii) Probability Model

E D

Target
Image

Q

Target
reconst

z ̂z ̂z

I ̂I

Probability
Model

P(̂z) ∼ 𝒩(0,1)

log
1

P(̂z)
≈ L(bits)

Design Decisions: (ii) Probability Model

E

Target
Image

Q
z ̂z

I

Probability
Model

‣ More complex Probability models

‣ ,

i.e: are different per element of

‣ Need to now encode tensors:

- Hyperprior approach

PDF(̂zi) → 𝒩(μi, σi)

μ, σ ̂z
μ, σ

[Balle, ICLR18]
P(̂z) ∼ 𝒩(0,1)

bits

̂E Q D̂

E D

Target
Image

Q

AEC-E

Target
reconst

AEC-D

z ̂z ̂z

I ̂I

AEC-E AEC-D

y ̂y ̂y μ, σ

𝒩(μ, σ) 𝒩(μ, σ)

𝒩(0,1)𝒩(0,1)
Subnet

Design Decisions: (ii) Probability Model

Variational image compression with a scale hyperprior
Balle et.al. 2018

Design Decisions: (ii) Probability Model

Design Decisions: (ii) Probability Model

Hyper-hyper-prior models:
https://huzi96.github.io/coarse-to-fine-compression.html

Benchmarks

ELIC: Efficient Learned Image Compression with Unevenly Grouped
Space-Channel Contextual Adaptive Coding
He et.al. 2022

Benchmarks

M2T: Masking Transformers Twice for Faster Decoding
Mentzer et.al. 2023

Issues: (i) Speed!

Slide from Dr. Toderici’s talk at CVPR20

Issues: (i) Speed!

‣ Design decisions: Need to choose frameworks, which aren’t fundamentally slow/causal

(eg: avoid autoregressive image compression methods)

‣ For example: [ELF-VC, Rippel et.al. 2021, ArXiv]

real-time HD 720 decode on mid-range GPU

- VGA 640x480: encode @ 47 FPS, decode @ 91 FPS

- HD 1280x720: encode @ 19 FPS, decode @ 35 FPS

Issues: (i) Speed!

‣ Design decisions: Need to choose frameworks, which aren’t fundamentally slow/causal

(eg: avoid autoregressive image compression methods)

‣ For example: [ELF-VC, Rippel et.al. 2021, ArXiv]

real-time HD 720 decode on mid-range GPU

- VGA 640x480: encode @ 47 FPS, decode @ 91 FPS

- HD 1280x720: encode @ 19 FPS, decode @ 35 FPS

Issues: (i) Speed!

‣ Design decisions: Need to choose frameworks, which aren’t fundamentally slow/causal

(eg: avoid autoregressive image compression methods)

‣ Faster Hardware: Hardware support for NN keeps improving year by year

Issues: (i) Speed!

Issues: (i) Speed!

TO
PS

0

7.5

15

22.5

30

2018 2019 2020 2021

Qualcomm Hexagon

Issues: (ii) Determinism!

Different hardware =>

different floating point implementation =>

catastrophic failures!

Issues: (ii) Determinism!

‣ Encoding/decoding must yield exactly the same outputs,

irrespective of hardware architecture

‣ Floating point (FP32/16) models don’t work:

Model Quantization necessary [E.g: Ballé 2019]

Take-aways from Today

ML-based codecs allow for learned encoder-decoder transforms and therefore

(i) better fidelity to chosen probability model over latents => better rate-distortion

(ii) allow for substituting distortion of the choice

 (iii) domain adaptable and flexible

Main idea to achieve ML-based codec is to overcome (automatic) differentiation over

 (i) quantization and (ii) discrete probability models

ML-based methods will likely form the basis of future compression

