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Recap: What is an image?
Array of pixels: (Height, Width, Channels)



Recap: Image Compression 

Image from Kodak dataset

764x512 764x512x3 bytes 
= 1.1MB! 
(Uncompressed) 



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB 
JPEG -> 27KB (~40X!) 
 

Recap: Image Compression -> JPEG 40x



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB 
JPEG -> 14KB (~80X!) 
 

Recap: Image Compression -> JPEG 80x



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB 
JPEG -> 8KB (~137X!) 
 

Recap: Image Compression -> JPEG 137x



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB 
BPG -> 8KB (~137X!) 
 

Recap: Image Compression -> BPG



Quiz Q1
Q1.1 What's the expected raw size of this image?
Ans: 370 x 370 x (24+8) bits = 370 x 370 x (3+1) bytes = 547.6 KB
Q1.2 In this image you can see that there are basically just two colors 
(white and a bad version of Berkeley blue color). What will be the 
expected image size if we use only 2 colors to compress this image in 
KB?
Ans: 370 x 370 x (1+8) bits = 154.012 KB
Q1.3 Now you also see that along with having just 2 colors, the image 
also has only two levels of transparency (perfectly transparent and 
perfectly opaque). Using these properties what will be the expected image 
size in KB?
Ans: 370 x 370 x (1+1) bits = 34.225 KB

Q1.4 PNG seems to perform better than even using 1 bit for color and 1 
bit for alpha!
Ans:  Better entropy coding!
PNG performs better because it also uses a version of LZ77 to look for 
matching pixels and store match length/offset pairs, rather than each pixel 
individually. Because this image has a lot of redundancy, there are 
probably many matches LZ77 can identify. 



Quiz Q2

Ideas:

1. Higher resolution same image => less correlation between neighboring 
pixels => need to increase block size

2. More homogenous blocks => better predictive coding using previous 
blocks => more savings



Quiz Q3

Q1.1 What's the absolute value of the reconstruction 
error  for the last symbol?
Ans: 

 => error = 0.5

|Xn − ̂Xn |

X6 = 2.9; ̂X6 = 2.4

Q1.2 Given the transmitted sequence 
, what is the final 

decoded value of ?
Ans: 
1.1 + 0 + 1 + 0 -1 +2 -1 = 2.1

X1, ̂e2, ̂e3, … = 1.1,0,1, − 1,2, − 1
̂X6



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB 
JPEG -> 8KB (~137X!) 
 

Recap: Image Compression -> JPEG 137x



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB 
BPG -> 8KB (~137X!) 
 

Recap: Image Compression -> BPG



Recap: HiFiC -> ML-based image compression

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB 
BPG -> 8KB (~137X!) 
 



Recap: JPEG



How can we improve further?

Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of DCT, DWT 
etc. can we obtain better performance with non-linear transforms

Ballé, Johannes, et al. "Nonlinear transform coding." IEEE Journal of Selected Topics in Signal Processing 15.2 (2020): 339-353. 



What next? 

Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of DCT, DWT 
etc. can we obtain better performance with non-linear transforms

End-to-End RD Optimization: JPEG uses very smart albeit heuristics for R-D 
optimization, e.g. rate needs to be shared between different channels. Can we 
make R-D decisions end-to-end? 



Recent Learned Image/Video Codec Works
‣ Learned Image Compression: 

[Toderici, CVPR15], [Theis, ICLR17], [Agustsson, NIPS17], [Baig, NIPS17],  
[Balle, ICLR17], [Rippel, ICML17], [Balle, ICLR18], [Johnston, CVPR18],  
[Mentzer, CVPR18], [Choi, ICLR19], [Balle, ICLR19], [Lee, ICLR19], [Mentzer, CVPR19] 
[Lu, 2021], [Ma et al, 2021], [Yang et al, NIPS2021], [Mentzer et al. NIPS2021] . . .  

‣ Learned Video Compression 
[Wu. et al, ECCV18], [Lu et al, CVPR19], [Cheng et al, CVPR19]  
[Rippel et al ICCV19], [Hu et al, 2020], [Agustsson et al. 2020], [Golinski et al. 2020] 
[Habiban et al.2019], [Lu et al. 2020], [Liu el.al.2020], [DVC, Lu et al. 2019] . . .  

‣ The CLIC Challenge 
“Challenge on Learned Image Compression”  
-> ongoing image compression contest at Data Compression Conference 
  

Our Goal: Understand the Key concepts 
Lots of interesting works!  



ML 101 Review

‣ Data:  
‣ Non-linear Model and Differentiable Architectures:  

‣ Loss Function: 

(X, y)
f (X; θ)

loss(y, ̂y)

X f (X; θ)

y

loss(y, ̂y)̂y



ML 101 Review

‣ Use back-propagation/gradients to “learn” (update) model parameters  
‣ Does this by taking gradients (back-propagation) of  wrt  

θ
loss (y, f (X; θ)) θ

X f (X; θ)

y

loss (y, f (X; θ))̂y

θn = θn−1 − ∇θ(loss (y, f (X; θ)))

minθ loss (y, f (X; θ))



ML 101 Review
‣ Uses data to learn the model parameters  for optimizing a  
‣ Does this by taking gradients (back-propagation) of  wrt  
‣ Advantage over standard models: 
‣ Allows optimizing any objective function loss as long as  is differentiable! 
‣ doesn’t play well with discrete distributions 

‣ Allows stacking of non-linear layers (linear layer + non-linearity) 
‣ recall stacking of linear layers is not so-powerful: ABC…= D if ABCD are matrices

θ loss( ⋅ )
loss (y, f (X; θ)) θ

f ( ⋅ ; θ)

X f (X; θ)

y

loss (y, f (X; θ))̂y

For more details check out CS231N course notes: https://cs231n.github.io/



ML 101 Review: Auto-encoder architecture

https://lilianweng.github.io/posts/2018-08-12-vae/



The Image Compression Problem
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Encoder Decoder

Rate Distortion
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 Encoding proceeds in 3 steps:  

‣ DCT Transform: 
Linear transform to uncorrelate the pixels 

‣ Quantize -> Loss of precision 
 

‣ Arithmetic Coding -> Lossless Compression 
In the simplest form, uses a discrete distribution 
         to encode  into a bitstream of length 

Q([2.3,3.7]) = [2,4]

̂z
bits

L(bits) ≈ log
1

P( ̂z)

P( ̂z)

CAUTION: Simplified framework

Traditional Image Codecs
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Traditional Image Codecs

Target 
Image

DCT Q

Arithmetic 
Encoding

Target 
reconst

I-DCT

Arithmetic 
Decoding

z ̂z ̂z

bits

I ̂I

log
1

P( ̂z)
≈ L(bits)

min
L(bits)≤B

d(I, ̂I)Goal: 



Traditional Image Codecs

Target 
Image

DCT Q

Arithmetic 
Encoding

Target 
reconst

I-DCT

Arithmetic 
Decoding

z ̂z ̂z

bits

I ̂I

log
1

P( ̂z)
≈ L(bits)

min
L(bits)≤B

d(I, ̂I)Goal: 



Learned Image Codecs
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Question: How do we train the parameters? 

Deep Feed-Forward Networks 
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Learned Image Codecs
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‣ Quantizer -> Q([2.3,3.7]) = [2,4]



Learned Image Codecs
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‣ Quantizer ->  

‣ Workaround-1: model the quantizer 

as adding noise during training

, where  

Q([2.3,3.7]) = [2,4]

̂z = z + ϵ ϵ ∼ U(−0.5,0.5)
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Learned Image Codecs
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‣  is not defined!  

‣ Idea: Parmetrize  using a density 

function (for ex:          ) 
 

‣  Gradient is now well defined!  

 

∂P( ̂z)
∂ ̂z

P( ̂z)

P( ̂z) = CDF( ̂z + 0.5) − CDF( ̂z − 0.5)

∂P( ̂z)
∂ ̂z

= PDF( ̂z + 0.5) − PDF( ̂z − 0.5)

𝒩(0,1)



Learned Image Codecs

E

Target 
Image

Q
z ̂z

I

Loss Function = log
1

P( ̂z)
+ λd(I, ̂I)

Probability 
Model

P( ̂z)discrete prob 
distribution 

log
1

P( ̂z)

‣  is not defined!  

‣ Idea: Parametrize  using a 

density function (for ex:          ) 
 

‣  Gradient is now well defined!  

 

∂P( ̂z)
∂ ̂z

P( ̂z)

P( ̂z) = CDF( ̂z + 0.5) − CDF( ̂z − 0.5)

∂P( ̂z)
∂ ̂z

= PDF( ̂z + 0.5) − PDF( ̂z − 0.5)

𝒩(0,1)



Learned Image Codecs
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Learned Image Codecs
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End-to-End Learned Image Codec
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Possible to train end-to-end!



Example -> MNIST

https://colab.research.google.com/drive/1O3eQAaxlyLYI1HO7K1b12eJQsQKxjWwx?usp=sharing



Learned Image Codecs

No hand-tuning parameters 
Can “learn” the parameters
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ML Offers Adaptivity Not Possible With Traditional Codecs

Content-aware

Focus on areas of high importance

Deprioritize shrubbery

Focus on  
faces and text

Task-aware

Computation on compressed 
representationCustom codec for each domain

Domain-aware
Task:  

Watch Tennis!

Task: Face 

Recognition



Learned Image Codecs

No hand-tuning parameters 
Can “learn” the parameters

Loss Function = log
1

P( ̂z)
+ λd(I, ̂I)

Better distortion-Model separation 
Easy to tune model to different distortion metrics 

Possible to train end-to-end!
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Given source image 
(a) which of the 
following images do 
you prefer visually?


(b), (c), (d), (e), (f)


 
Given source image 
(a) which of the 
following images 
does a compressor 
with MSE distortion 
prefer?


(b), (c), (d), (e), (f)



Design Decisions: (i) Backbones

E D

Target 
Image

Q

Target 
reconst

z ̂z ̂z

I ̂I

log
1

P( ̂z)
+ λd(I, ̂I)

Probability 
Model

P( ̂z) = GaussCDF( ̂z + 0.5)
−GaussCDF( ̂z − 0.5)

log
1

P( ̂z)
≈ L(bits)

‣ Question: How can the same model work for any image sizes?  



Design Decisions: (i) Backbones

E D

Target 
Image

Q

Target 
reconst

z ̂z ̂z

I ̂I

log
1

P( ̂z)
+ λd(I, ̂I)

Probability 
Model

P( ̂z) = GaussCDF( ̂z + 0.5)
−GaussCDF( ̂z − 0.5)

log
1

P( ̂z)
≈ L(bits)

‣ Question: How can the same model work for any image sizes?  

- Only use Conv, Deconv … (no Fully Connected Layers) 



Design Decisions: (i) Backbones
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‣ Other Improvements:  

- Multiscale Encoder/Decoder: [Rippel et. al. 2018]  

- using GDN non-linearity: [Balle, 2017/18]



Design Decisions: (ii) Probability Model
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Design Decisions: (ii) Probability Model

E

Target 
Image

Q
z ̂z

I

Probability 
Model

‣ More complex Probability models 

‣ ,  

i.e:  are different per element of  

‣ Need to now encode  tensors:  

- Hyperprior approach

PDF( ̂zi) → 𝒩(μi, σi)

μ, σ ̂z
μ, σ

[Balle, ICLR18]
P( ̂z) ∼ 𝒩(0,1)
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Design Decisions: (ii) Probability Model

Variational image compression with a scale hyperprior
Balle et.al. 2018



Design Decisions: (ii) Probability Model



Design Decisions: (ii) Probability Model

Hyper-hyper-prior models: 
https://huzi96.github.io/coarse-to-fine-compression.html



Benchmarks

ELIC: Efficient Learned Image Compression with Unevenly Grouped 
Space-Channel Contextual Adaptive Coding 
He et.al. 2022



Benchmarks

M2T: Masking Transformers Twice for Faster Decoding 
Mentzer et.al. 2023



Issues: (i) Speed!

Slide from Dr. Toderici’s talk at CVPR20 



Issues: (i) Speed!

‣ Design decisions: Need to choose frameworks, which aren’t fundamentally slow/causal 

(eg: avoid autoregressive image compression methods)  

‣ For example: [ELF-VC, Rippel et.al. 2021, ArXiv]  

real-time HD 720 decode on mid-range GPU 

- VGA 640x480: encode @ 47 FPS, decode @ 91 FPS 

- HD 1280x720: encode @ 19 FPS, decode @ 35 FPS 
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Issues: (i) Speed!

‣ Design decisions: Need to choose frameworks, which aren’t fundamentally slow/causal 

(eg: avoid autoregressive image compression methods)  

‣ Faster Hardware: Hardware support for NN keeps improving year by year 
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Issues: (ii) Determinism!

Different hardware => 

different floating point implementation => 

catastrophic failures!  



Issues: (ii) Determinism!

‣ Encoding/decoding must yield exactly the same outputs, 

irrespective of hardware architecture 

‣ Floating point (FP32/16) models don’t work:  

Model Quantization necessary [E.g: Ballé 2019] 

 



Take-aways from Today

ML-based codecs allow for learned encoder-decoder transforms and therefore  

(i) better fidelity to chosen probability model over latents => better rate-distortion 

(ii) allow for substituting distortion of the choice 

      (iii) domain adaptable and flexible 

Main idea to achieve ML-based codec is to overcome (automatic) differentiation over 

 (i) quantization and (ii) discrete probability models 

ML-based methods will likely form the basis of future compression


