
Chapter 2

Context Tree Weighting

2.1 Motivation

Assume we wish to compress a sequence xN = (x1, x2, . . . , xN) drawn from
Pa(xN). If the probability distribution of the source is known, we can use a
compression algorithm like Arithmetic or Huffman coding that makes use of this
probability to perform the compression. When the actual distribution Pa(xN) is
unknown, we can still compress the sequence by using a universal compression
algorithm (e.g. Lempel Ziv, CTW) that does not require knowledge of the
source distribution.

Suppose we are interested in estimating the probability distribution of xN .
Since a good compressor implies a good estimate of Pa(xN), we could use the
compression result of LZ to implicitly compute the probability distribution. The
CTW algorithm fits this scenario even better, since it explicitly estimates the
probabilities before compression.

In the following sections, we establish the connection between compression
and probability estimation. Depending on the assumed statistical properties of
the source we use different approaches. For example, for i.i.d sources Arithmetic
Coding is presented, while for more general models we introduce Context Tree
Weighting.

2.2 Good Universal Compression → Good Uni-
versal Estimation

Let xN be the sequence whose probability distribution Pa(xN) we need to es-
timate. As stated above, we are going to use ideas from a good compressor in
order to achieve this. The base of the logarithm in this discussion is always 2.

Assume that we have a good compressor of the sequence. Let L(xN) be the
length of the codeword c(xN). One may construct a “distribution” for which

the set of codeword lengths {L(xN)} is optimal: PL(xN) = 2−L(xN). This

15

16 CHAPTER 2. CONTEXT TREE WEIGHTING

distribution is effectively the compressor’s estimate of Pa(xN). Notice that
our definition of PL(xN) may not normalize to one; to address this, we define

kN =
∑
xN

2−L(xN) as a normalization factor. Note that kN ≤ 1 from Kraft’s

inequality. After normalization, we have:

PL(xN) =
2−L(xN)

kN
⇒

L(xN) = − log(kN) + log
1

PL(xN)

We define the individual redundancy ρ(xN) of a source code, relative to the
actual source:

ρ(xN) = L(xN)− log
1

Pa(xN)

Similarly we can define the average redundancy ρ̄N as the average value of ρ(xN)
over all possible sequences xN .

ρ̄N = E[ρ(XN)]

=
∑
xN

Pa(xN)

[
L(xN)− log

1

Pa(xN)

]

=
∑
xN

Pa(xN)

[
− log kN + log

Pa(xN)

PL(xN)

]

= − log kN +
∑
xN

Pa(xN) log
Pa(xN)

PL(xN)

= − log kN +D(Pa||PL)

One may observe the following properties for ρ̄:

• ρ̄N ≥ 0, since kN ≤ 1 ⇒ − log(kN) ≥ 0 and the K-L divergence D(·||·) is
always non-negative.

• If ρ̄N → 0 then kN → 1 and D(Pa(xN)||PL(xN))→ 0.
A good compressor is going to have a small ρ̄n. Therefore, if we have a
good compressor, we also have a good estimate of the real distribution
Pa(xN). This means that we can only achieve ρ̄N = 0 if the source code
uses the actual distribution to encode the sequence.

2.3. ARITHMETIC CODING 17

2.3 Arithmetic Coding

Assume a lexicographical ordering over the sequences. LetQ(xN) =
∑

x̃N<xN
Pa(x̃N)

be the cumulative probability of xN . We associate to a source sequence xN a
source interval I(xN) = [Q(xN), Q(xN) + Pa(xN)]. Note that these intervals
are disjoint and that their union is [0, 1). Also, assume that we have a code-
word c = (c1, c2, . . . , cN). For every binary codeword define .c = 0.c1c2 · · · cN =
c12−1 + c22−2 + · · ·+ cN2−N . Each codeword has associated an interval J(c) =
[.c, .c+ 2−L].

The idea of arithmetic coding is to choose for a given source sequence xN

the codeword c(xN) with a code interval J(c(xN)) inside I(xN). In order to do
that we can take:

L(xN) =

⌈
log

(
1

Pa(xN)

)⌉
+ 1

.c =
⌈
Q(xN) · 2L(xN)

⌉
· 2−L(xN)

Then, it follows that:

.c+ 2−L(xN) =
(⌈
Q(xN)2L(xN)

⌉
+ 1
)

2−L(xN)

≤ Q(xN) + 2−L(xN)+1

= Q(xN) + 2
−
(⌈

log 1

Pa(xN)

⌉
+1
)

+1

≤ Q(xN) + Pa(xN)

Therefore, Q(xN) ≤ .c ≤ .c + 2−L(xN) ≤ Q(xN) + Pa(xN), and J(c) = [.c, .c +

2−L(xN)] ⊂ [Q(xN), Q(xN) + Pa(xN)], which is the desired result.

Assuming that the actual probability distribution Pa(xN) is known, the
redundancy using Arithmetic Coding is given by ρ(xN) = L(xN)− log 1

Pa(xN)
=

dlog 1
Pa(xN)

e+ 1− log 1
Pa(xN)

< 2, and it follows that ρ̄N < 2.

We observe that Arithmetic Coding achieves codeword lengths that are very
close to the optimal codeword lengths log 1

Pa(xN)
.

2.4 One unknown Parameter

In the previous section we have seen that if we know the true distribution of the
source we can achieve ρ̄(xn) < 2 using Arithmetic Coding. Now suppose that
we have an i.i.d. source XN ∼ Bern(θ), where the parameter θ is unknown. Is
it still possible to design a source code which has acceptable individual redun-
dancies for all sequences xN? The answer turns out to be affirmative: We can

18 CHAPTER 2. CONTEXT TREE WEIGHTING

apply Arithmetic Coding with a coding distribution equal to an estimated dis-
tribution Pe(x

N) formulated by the Krichevsky and Trofimov (KT) Estimation
[1].

We present the Krichevsky-Trofimov estimator, and demonstrate that in
combination with Arithmetic Coding it can actually achieve ρ(xN) < (1 +
1
2 logN) + 2 = 1

2 logN + 3. The term (1 + 1
2 logN) is the price we pay for

not knowing the parameter θ (it is called parameter redundancy) and the other
term is the redundancy for using Arithmetic Coding over the estimated distri-
bution Pe(x

N).

2.4.1 Krichevsky-Trofimov (KT) Estimation

Suppose that we have an i.i.d. source XN ∼ Bern(θ), but we do not know θ.
We would like to estimate θ based on the sequence xN . One way to estimate θ
is by using the KT Estimation. Let a and b denote the number of 0’s and 1’s in
xN , respectively, so that a+ b = N . Assume that we use as a prior probability
for θ the Dirichlet (1/2, 1/2). That is:

f(θ) =
1

π
√
θ(1− θ)

, θ ∈ (0, 1).

The use of the above distribution as a prior knowledge for the parameter θ is not
unique. Yet, it leads to iterative formulas for calculating the estimated posterior
distribution and to nice properties. Using the above assumptions we get:

Pe(x
N) = Pe(a, b)

=

∫
Pe(a, b|θ)f(θ)dθ

=

∫
(1− θ)aθbf(θ)dθ

=

∫
1

π
√
θ(1− θ)

(1− θ)aθbdθ

The above estimator of the posterior probability has the following properties.
The KT Estimator Pe(α, β)

• can be computed sequentially, i.e., Pe(0, 0) = 1, and for a ≥ 0 and b ≥ 0

Pe(a+ 1, b) =
a+ 1/2

a+ b+ 1
Pe(a, b)

Pe(a, b+ 1) =
b+ 1/2

a+ b+ 1
Pe(a, b)

2.4. ONE UNKNOWN PARAMETER 19

Note that

Pe(a, b) = Pe(a+ 1, b) + Pe(a, b+ 1)

• for a+ b ≥ 1 It satisfies the following inequality:

1

2
√
a+ b

(
a

a+ b
)a(

b

a+ b
)b ≤ Pe(a, b) ≤ (

a

a+ b
)a(

b

a+ b
)b (2.1)

Note that we could use any other prior distribution for the parameter θ, or
another estimator entirely. The Maximum Likelihood (ML) estimator results in
the following formulas:

argmax
θ

Pe(a, b|θ) =
b

a+ b
(2.2)

max
θ
Pe(a, b|θ) = (

a

a+ b
)a(

b

a+ b
)b (2.3)

Unlike the KT estimator, ML has no simple recursive formulation.

2.4.2 Arithmetic Coding and KT Estimator

Now that we have explained the KT Estimator we are going to use Arithmetic
Coding on the estimated distribution Pe(x

N) and hope that we do not pay
much for not knowing the actual parameter θ. Recall that ρ(xN) ≤ 2 for
Arithmetic Coding with known probability distribution. Thus, with respect
to the estimated distribution we pay a maximum of 2 bits in the individual
redundancy:

L(xN) < log
1

Pe(α, β)
+ 2 (2.4)

Surprisingly, under the model of one unknown parameter, we can also find an
upper bound for the individual redundancy with respect to the actual distribu-
tion:

20 CHAPTER 2. CONTEXT TREE WEIGHTING

ρ(xN) = L(xN)− log
1

Pa(xN)

(a)
< log

1

Pe(a, b)
− log

1

Pa(xN)
+ 2

= − logPe(a, b) + log(1− θ)aθb + 2

(b)

≤ log
(1− θ)aθb

1
2
√
a+b

(a
a+b)

a(b
a+b)

b
+ 2

(c)

≤ log
(a
a+b)

a(b
a+b)

b

1
2
√
a+b

(a
a+b)

a(b
a+b)

b
+ 2

=
1

2
log(a+ b) + 1 + 2

=
1

2
logN + 3,

where

• (a) follows from (2.4).

• (b) follows from the lower bound of Pe(α, β) of (2.1).

• (c) follows from (2.2).

Hence, even if we have one unknown parameter the individual redundancy is
never larger than 1

2 log(N) + 3 for all sequences xN and all θ ∈ [0, 1].

2.5 Tree Source

If a source is memoryless, each new source symbol is generated according to
the same parameter θ. In a more complex situation we can assume that the
parameter for generating the next symbol depends on the most recent source
symbols. A Tree Source is a nice concept to describe such sources. It consists
of a set S of suffixes that together form a tree. To each suffix (leaf) s ∈ S of the
tree there corresponds a parameter θs. Therefore for a Tree Source we have |S|
parameters that denote all the possible dependencies between the next symbol
and the past. The probability of the next symbol being one depends on the
suffix in S of the semi-infinite sequence of past source symbols.

Definition 2.5.1. A context of a source symbol xt is a suffix of the semi-infinite
sequence . . . xt−2xt−1 that precedes it.

Define S as the set of prefixes and ΘS = {θs = P (xt = 1|xt−1
t−D = s) : s ∈ S}.

2.5. TREE SOURCE 21

Then we can say that the probability of xN is as follows,

Pa(xN) =
∏
s∈S

Pa(as, bs)

=
∏
s∈S

θbs(1− θs)a

where as is the number of 0’s right after the string s. For example, for xN =
011011100101 and s = 10 we have that as = 1 and bs = 2.

Example 2.5.2. Consider the following Tree Source where S = {1, 10, 00},
and let P (xt = 1|s = xt−2xt−1 = 00) = 0.5, P (xt = 1|s = 10) = 0.3 and
P (xt = 1|s = 1) = 0.2. Given the prefix 1, suppose xN = 01101. Then, the
probability of xN given the prefix s = 1 can be computed as follows:

Pa(01101|1) = P (0|1)P (1|10)P (1|1)P (0|1)P (1|10)

= 0.8× 0.3× 0.2× 0.8× 0.3

Figure 2.1: Tree Structure of the source in Example 2.5.2.

Some comments:

• The root λ of the tree source corresponds to the empty context. In that
case the source is memoryless.

• If a tree source of depth D is complete then this is similar as saying that
the source is a Markov source of order D.

• If we have a tree source of depth D then we can always add more leafs in
order to make it complete and create a Markov source of order D.

2.5.1 Known Model, Unknown Parameters

Now, suppose that we only know the structure of the tree but we do not know
the leaves. This means that we do not know any of the parameters θs. This
problem is just a generalization of the problem described in section 2.4 where
we did not know one parameter θ. Specifically, all symbols that correspond
to the same suffix s ∈ S form a memoryless subsequence whose statistics are

22 CHAPTER 2. CONTEXT TREE WEIGHTING

determined by the unknown parameter θs. For this subsequence we simply use
the KT -estimator that we introduced in section 2.4.

ρ(xN) = L(xN)− log
1

Pa(xN)

(a)
< log(

1

Pe(xN)
)− log

1

Pa(xN)
+ 2

(b)
= log(

1∏
s∈S Pe(as, bs)

)− log
1

Pa(xN)
+ 2

=
∑
s∈S

log(
θbss (1− θs)as
Pe(as, bs)

) + 2

(c)

≤
∑
s∈S

(1

2
log(as + bs) + 1

)
+ 2

(d)

≤ |S|
(

1

2
log

∑
s∈S(as + bs)

|S|
+ 1

)
+ 2

= |S|
(

1

2
log

N

|S|
+ 1

)
+ 2,

where

• (a) follows from the fact that we use Arithmetic Coding with the estimated
probability Pe(x

N) that the encoder knows, and thus the price is only 2
bits.

• (b) follows because Pe(x
N) =

∏
s∈S Pe(as, bs).

• (c) follows if we consider each term of the summation separately and use
(2.2).

• (d) follows from the concavity of the log-sum function.

We can make the following three observations:

• We observe again that the result qualitatively is the same as in section
2.4. The price for using the Arithmetic coding on the estimated model is 2
bits, and the O(log(N)) term is the price for not knowing the parameters
θs.

• Since |S| is constant, it is clear that 1
N ρ(xN)→ 0 as N →∞.

• |S| = 1 means that we only have one unknown parameter θ. This is the
same model as in section 2.4.

• The above upper bound is actually the optimal value that we can get. The
reasoning is as follows: Let T (S) denote family of all tree source on S.

2.5. TREE SOURCE 23

Given a specific tree model S, but with unknown the set Θs it is proven
that [4]:

max
xN

[l(xN)− min
P∈T (S)

log(
1

p(xN))
] ≥ |S|

2
log(N) + o(1)⇒

min
all schemes

[
max
xN

[l(xN)− min
P∈T (S)

log(
1

p(xN))
]
]

=
|S|
2

log(N) + o(1)

This means that the worst case individual redundancy is actually bounded

by |S|
2 log(N) and some constant terms. We observe that using KT -

estimation we can actually achieve this bound.

2.5.2 Unknown Model - Context Tree

The framework that we are going to consider in this section is the one where
we do not know the Tree Source itself, but we do know the maximum depth
D of the Tree. This means that we are not aware of the suffixes and the kind
of dependance that exists between the source symbols, but we know that there
is not a dependance of larger than D time steps. In this case we can use a
Context Tree to compute the appropriate coding distribution. That is, we are
trying to find an estimated distribution based on the observed sequence and
then use Arithmetic coding on that distribution. In order to do this cleverly
we will define a weighted coding distribution which takes into account all the
possible tree sources that could lead to the sequence that we observe. We hope
that using this technique, the individual redundancy that we will get is small as
in the previous sections. We will see that this is the case. Notice that although
the CTW gets a smaller redundancy than Lempel Ziv, as a counterpart the
latter does not require to know D ahead of time, while the CTW does.

Lets start by defining the context tree.

Definition 2.5.3. The context tree TD is a set of nodes labeled s, where s is
a binary string with length l(s) such that 0 ≤ l(s) ≤ D. Each node s ∈ TD
with l(s) < D, ’splits up’ in to two nodes 0s and 1s. The node s is called the
parent of the nodes 0s and 1s, who in turn are the children of s. To each node
s ∈ TD, we assosiate as ≥ 0 and bs ≥ 0 which is the number of zeros and ones
respectively up to that point. For the children 0s and 1s of parent node s, the
counts must satisfy a0s + a1s = as and b0s + b1s = bs.

A Context Tree is a complete tree up to depth D. It is complete because
we do not know the real tree that we are trying to approximate. Depending on
the sequence we ’learn’ the parameters θs and we perform weighting over all the
tree structures that could have generated this sequence. At this point we repeat
the meaning of the word context: A context of a source symbol xt is a suffix of
the semi-infinite sequence . . . , xt−2xt−1 that precedes it. So, a context tree up
to depth D means that we know that our source has no memory more than D.
Note that the context tree is well-defined since no matter what it is the suffix of

24 CHAPTER 2. CONTEXT TREE WEIGHTING

xt, there is a parameter that determines how xt was generated. As before, each
node s in the context tree is associated with the subsequence of source symbols
that occurred after the context s.

Example 2.5.4. First, we have to define the depth D of the tree, and fill up
the tree up to that depth. For example, take D = 2, and consider the sequence
xN = 01 | 1010100.

Figure 2.2: Tree Structure of Example 2.5.4.

Recall that a and b are the number of 0’s and 1’s in xN , respectively, and as

and bs represent the number of 0’s and 1’s in xN right after a string s, respec-
tively. After completing the tree, we compute:

a = 4 (xN = 01 | 1010100)
b = 3 (xN = 01 | 1010100)
a0 = 1 (xN = 01 | 1010100)
b0 = 2 (xN = 01 | 1010100)
a1 = 3 (xN = 01 | 1010100)
b1 = 0 (xN = 01 | 1010100)
a00 = 0 (xN = 01 | 1010100)
b00 = 0 (xN = 01 | 1010100)
a10 = 1 (xN = 01 | 1010100)
b10 = 2 (xN = 01 | 1010100)
a01 = 2 (xN = 01 | 1010100)
b01 = 0 (xN = 01 | 1010100)
a11 = 0 (xN = 01 | 1010100)
b11 = 0 (xN = 01 | 1010100)

Now that we have explained the formulation of the Context Tree we are going
to show how we can get a good estimation of the actual probability distribution
of the source that will give a nice upper bound for the individual redundancy of
any source sequence. Remember that the encoder and the decoder know neither
the model of the tree (that is the set of suffixes S ∈ CD), nor the parameter
vector ΘS . They know only that the depth is less or equal to D. The idea
behind the usage of Context Tree is described in the following corollary.

Corollary 2.5.5. Suppose that a source xN is distributed according to P 1
c (xN)

or P 2
c (xN). Then, one can achieve a redundancy of 1 bit using the weighted

2.5. TREE SOURCE 25

distribution

Pwc (xN) =
P 1
c (xN) + P 2

c (xN)

2
(2.5)

The proof is left as an exercise for the reader.

Exercise:
Compute the worst case redundancy in the case where we use the distribution
P 1
c to encode xN when the truth distribution of the source is P 2

c instead.

Using the above result, in the context tree, we are trying to find a weighted
probability of a node of the tree in order to take into account that we do not
know the model. Specifically we propose the following weighting.

Definition 2.5.6. Given a tree source of depth D and S = (s1, s2, . . . , sn), the
weight at a specific node Γ(s) is given by:

ΓD(s) =


0 , if s ∈ S

1Γ(0s)Γ(1s) , if s /∈ S

∅ , if l(s) = D

(2.6)

Observe that the weight depends only on the set of strings, not on the prob-
ability of the leaves. Every tree source has a weight Γ(S) = |Γ(λ)| associated
to it, which is upper bounded by the number of nodes, which is itself upper-
bounded by 2D. Most importantly, computation of these weights has a simple
recursive structure.

Example 2.5.7. Consider the following tree source with maximum depth 3.
According to the above formulation, its weight is given by

Γ3(S) = |Γ(λ)|
= |1Γ(0)Γ(1)|
= |11Γ(00)Γ(10)0|
= |11000|
= 5

Definition 2.5.8. To each node s ∈ CD, we assign a weighted probability P sw
which is defined as

P sw =

{
1
2P

s
e (as, bs) + 1

2P
s0
w P s1w , if l(s) 6= D

P se (as, bs) , if l(s) = D
(2.7)

26 CHAPTER 2. CONTEXT TREE WEIGHTING

Figure 2.3: Tree structure of Example 2.5.7.

In other words, if the suffix s is on the leaves of the tree, then the probability
of the current node is the estimated probability P se (as, bs). However, if this is not
true, then the probability P sw is the average between the estimated probability
and the product of the weighted probabilities that correspond to the children.
The weighted probabilities of a node can be regarded as a weighting over the
estimated probabilities corresponding to all the (sub-) models that live above
this node. This point of view of the above algorithm is shown in the next lemma.

Lemma 2.5.9. The weighted probability P sw of a node s ∈ TD with l(s) = d for
0 ≤ d ≤ D satisfies

P sw =
∑

U∈CD−d

2−ΓD−d(U)
∏
u∈U

Pe(aus, bus)

with
∑

U∈CD−d
2−ΓD−d(U) = 1. The summation is over all complete and proper

suffix sets U .

Proof

P sw =
1

2
Pe(as, bs) +

1

2
P 0s
w P 1s

w

(a)
=

1

2
Pe(as, bs)

+
1

2

(∑
V∈CD−d

2−ΓD−d(V)
∏
v∈V

Pe(av0s, bv0s)
)(∑
W∈CD−d

2−ΓD−d(W)
∏
w∈W

Pe(aw1s, bw1s)
)

(b)
= 2−1Pe(as, bs) +

∑
W,V∈CD−d

2−1−ΓD−d(V)−ΓD−d(W)
∏

v∈V×0∪W×1

Pe(aus, bus)

(c)
=

∑
U∈CD−d+1

2−ΓD−d+1(U)
∏
u∈U

Pe(aus, bus),

where (a) follows by using the induction hypothesis, (b) follows by rearranging
the terms and (c) follows from (2.7). The conclusion is that the hypothesis also
holds for d− 1, and by induction for all 0 ≤ d ≤ D.

2.5. TREE SOURCE 27

The fact
∑
U∈CD−d 2−ΓD−d(U) = 1 can be proved similarly if we note that

∑
U∈CD−d+1

2−ΓD−d+1(U) =
1

2
+

1

2

(∑
V∈CD−d

2−ΓD−d(V)
)(∑
W∈CD−d

2−ΓD−d(W)
)

=
1

2
+

1

2
= 1

(2.8)

Now we show some properties of P sw.

(a) Let Pλw the estimated weighted probability at the root λ.

Pλw =
∑
U∈CD

2−ΓD(U)
∏
u∈U

Pe(au, bu) ≥ 2−ΓD(λ)
∏
s∈S

Pe(as, bs) (2.9)

(b) If xtt−l(s)+1 = s,

P sw(xt, xt+1 = 0) + P sw(xt, xt+1 = 1) = P sw(xt) (2.10)

(c) If xtt−l(s)+1 6= s,

P sw(xt, xt+1 = 0) = P sw(xt, xt+1 = 1) (2.11)

Finally, we want to compute what we lose by the Context Tree Weighting
algorithm. Assume Pa(xN) is the actual probability (that we do not know)
and Pc(x

N) is the probability obtained at the root of the tree (the estimated
probability of observing xN which is obtained from the CTW algorithm).

ρ(xN) = L(xN)− log
1

Pa(xN)

(a)
= log

∏
s∈S Pe(as, bs)

Pλw(xN)
+ log

Pa(xN)∏
s∈S Pe(as, bs)

+ L(xN)− log
1

Pλw(xN)

(b)
< ΓD(λ) + |S|

(
1

2
log

N

|S|
+ 1

)
+ 2,

where

• (a) follows by adding and subtracting the terms log
(∏

s∈S Pe(as, bs)
)

and

log 1
Pλw(xN)

. Notice that the dominating part is |S|
(

1
2 log N

|S| + 1
)

.

• (b) follows for the following reasons:

28 CHAPTER 2. CONTEXT TREE WEIGHTING

– We perform Arithmetic Coding in the distribution Pλw(xN). There-
fore:

L(xN)− log
1

Pλw(xN)
< 2

– From relation (2.9) we get that:

log

∏
s∈S Pe(as, bs)

Pλw(xN)
≤ ΓD(λ)

This represents the price that we pay because we do not know the
actual model of the tree source. We note again that ΓD(λ) is upper
bounded by the number of nodes in the tree source (2D) and that it
is independent of N .

– From section 2.4 where we knew the model and not the parameters
we get that:

log
Pa(xN)∏

s∈S Pe(as, bs)
< |S|

(
1

2
log

N

|S|
+ 1

)

Note that:

• Even in a source coding problem of a tree source where we only know the
maximum depth, Context tree weighting achieves the optimal worst case
individual redundancy.

Bibliography

[1] R.E. Krichevsky and V.K. Trofimov, “The Perfomance of Universal Encod-
ing”, IEEE Trans. Information Theory, vol. IT-27, pp. 199-207, March 1981.

[2] T.M. Cover and J.A. Thomas, “Elements of Information”. New York: John
Wiley, 1991

[3] Frans Willems, Yuri Shtarkov, and Tjalling Tjalkens, “Reflections on The
Context-Tree Weighting Method: Basic Properties”, IEEE Information The-
ory Society Newsletter, Vol. 47, No. 1, March 1997

[4] J. Rissanen, “Universal coding, information, prediction, and estimation”,
IEEE Trans. on IT, vol. 30, pp. 629-636, July 1984.

29

	Combined lecture notes 21
	Combined lecture notes 22
	Combined lecture notes 23
	Combined lecture notes 24
	Combined lecture notes 25
	Combined lecture notes 26
	Combined lecture notes 27
	Combined lecture notes 28
	Combined lecture notes 29
	Combined lecture notes 30
	Combined lecture notes 31
	Combined lecture notes 32
	Combined lecture notes 33
	Combined lecture notes 34
	Combined lecture notes 35

