Chapter 9

Discrete Denoising

9.1 Discrete Denoising

X B channel > denoiser > xn

Figure 9.1: Discrete denoising system

We consider the discrete denoising system shown in Figure 9.1. The clean
source X = (X1, Xo,...) (or (..., X_1, X0, X1,...) if X is a double-sided se-
quence) is corrupted by a noisy channel. The denoiser observes the output of
the channel Z = (Z1, Zs, . ..) (or double-sided (..., Z_1, Zy, Z1,...)) and recon-
structs the sequence X = (Xl, X5, ...) (or double-sided (... X1, Xo, X1, .. ).
The sequences X, Z, and X are discrete, that is, X; € X, Z; € Z, X, e /\Af',
and X, Z, and X are finite alphabets. We are interested in sequences of
block length n and denote the n-block source sequence, noisy sequence, and
reconstruction sequence by X" = (X1, Xo, ..., X,), 2" = (21,22, ...,Zy), and
Xn = (Xl, Xz, A Xn), respectively. Now we introduce some definitions.

Definition 9.1.1. An “n-block denoiser” is a mapping Xn:Zn 5 X,

There are some other terms used through the literature: estimation, non-
causal filtering, and smoothing. Given a “loss function” or “distortion criterion”
A XXX = [0,00) e.g. Hamming loss, and given denoiser X"(), and particular
sequences " and 2", define the per-symbol loss

L¢n(a™,2") = % ZA($17XR(Zn)[Z])a

where X"(z”)[z] is the i-th component of the n-tuple )A("(z")7 and it can also
be denoted by X;(z™). If (X", Z™) are jointly distributed according to some
distribution, then EL, (X™, Z™) is our measure of performance.

T
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9.2 Optimum Performance

We first present some notation for probability distributions. If A is a discrete
random variable, then P4(a) = Pr(A = a) is the probability mass function of
A. Assume that A € A and the alphabet set A = {al,ag, .. .,aw} is ordered.
Then P, is a column vector of dimension |A| with i-th component Pa(a;). Given
another jointly distributed random variable B, define the conditional probability
of A given B as

Pup(a) =Pr(A=a|B) =E [1{a—a| B] .

The column vector Py p is thus a random simplex vector of dimension |A|. We
need the following definitions to characterize the optimum performance.

Definition 9.2.1. The “Bayes envelope” of Px is defined as

U(Px) =min Y Px(z)A(z, &) = min EA(X, &) = min P{ Az,

TeX TeX TeX TeX

where Az is the column of the loss matrixz associated with Z:

A(al,:i)
A (CL27.£')

A (a\;t|af)

The Bayes envelope is the minimum expected loss achievable in guessing the
value of X ~ Px. We generalize the definition to accommodate any vector v of
dimension |X|: U(v) = min,p v'\z.

Definition 9.2.2. The minimizer of the Bayes envelope is called the “Bayes
response”
X Bayes(v) = argmin v \z,
BeX
where ties are resolved lexicographically, that is, the symbol with the smallest
index is chosen. Note that X payes(v) = X Bayes(av) Ya > 0.
Exercise 9.2.3. Show that the Bayes envelope has the following properties.
(a) U(-) is concave.

(b) “Data processing inequality”: IfY = f(Z), then EU (Px|z) < EU (Pxy).

(c) Generalize (b) to X—Z—-Y, thatis, X andY are conditionally independent
given Z.

Now we can express the optimum performance in terms of the Bayes enve-
lope.
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Theorem 9.2.4. If (X", Z™) are arbitrarily jointly distributed, then

1 n
ELg. (X", 2") = = S EU (Px, 20),
min ELg,( ) n; (Px, ")

where D, is the set of all n-block denoisers. The minimum is achieved by
Xz(Zn) = XBayes (PX,;\Z") .

Proof For any n-block denoiser, the per-symbol loss is equal to

EL¢. (X", 2") = ZEA(X”X(Zn))
-l [ (i) 2]
f,ZE

Z Py, 1z (x)A(2, Xi(2"™))

reX
(gli manPX |Z" A):|
ne= TEX T3
. i EU(Px, zn),
n

i=1
where the last equality follows from the definition of the Bayes envelope U (Px,|z=).
The equality in (a) is achieved by

X;(Z") = argmin Z Px,jzn(x)A(z,2) = XBayeS (PX |Zn)

TeX gex

9.3 Optimum Performance for Stationary Sources

If the clean source process and the noisy process are jointly stationary, we are
interested in the optimum performance of n-block denoiser as n — oc.

Definition 9.3.1. Suppose that (X,Z) = {(X;, Z;)}32 _ . are jointly stationary.
Define “denoisability of X based on Z” as

D(X,Z) = lim min ELg, (X", Z") (9.1)

n— oo Xﬂ EDn

The following exercises show properties of D(X, Z).
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Exercise 9.3.2. Prove that the limit in (9.1) exists.
Hint:

(a) A sequence {an}n>1 is called “sub-additive” if antm < ap + Q.

(b) “Sub-additive lemma:” ¥ sub-additive sequence {a,}, lim, o (a,/n) ex-
ists and is equal to inf,>1(an/n).

Exercise 9.3.3. Prove D(X,Z) = EU(Px,|z)-
Hint:

(a) D(X,Z) < EU(Px,|zm, ) Yk, m >0, where

m

an {(vaz’m+17"'7Z’n) meén:

0 otherwise.
Note that, by stationarity, EU(PXi\Zn) = EU(PXi\Zﬁail))'
(b) D(X,Z) > EU(Px,z)-
(c) lim EU(Px,zm, ) = EU(Px,|z)-
k—o0

Although the optimum performance can be expressed in terms of the Bayes
envelope and is achieved by the corresponding Bayes response, usually it is diffi-
cult to compute the Bayes response XBayes(PXl\Z) given the source distribution
Pxn and the noisy channel Pzn x». In addition, the source distribution Pxn» is
unknown in practice.
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Table 9.1: Qualitative comparison of compression and denoising

Compression Denoising

1
min E {ln(X”)} ! min ELg, (X", Z")
n

XneD,

(Achiever of min: Huffman Code | (Achiever of min: X;(Z") =
tailored to Pxn ) Xpayes(Px,|z7))

— Laxmy 4 o)

3

n

1 . 1
:EZH(XHX D) :EZEU(PXAZ")

i=1 i=1

" H(Xo|X L) 2

1 n o)
} =3 EU(Px,|z) 3

To summarize, we make an analogy between the concepts we have just seen
and the familiar ones from information theory.

9.4 Caveats

(a) Computation of Posterior Distribution is hard. Bayes’ rule gives

Y ami Pxn(2™) Pgnixn(2")
an PX"’ (.Tn)PZn‘Xn (Zn)

PXi|Z" (331) =

where 2"\ = (1,22, .. Ti—1,Tir1,...Ty). For certain special cases, the
computation is less complex. Example: For a Markov source corrupted by
DMC, the posterior distribution can be computed efficiently using forward-
backward Recursion which is an instance of Dynamic Programming.

(b) Bayes’ optimal solution requires the knowledge of the prior distribution
which is rarely available in practice.

!The minimization is over all length functions associated with uniquely decodable codes
for X™.

2 Assuming that X is stationary (see [1, Chapter 4]).

3 Assuming that (X, Z) are jointly stationary.
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These drawbacks call for a low complexity universal Denoiser, one that will
essentially achieve optimum performance for any prior.
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Chapter 10

DUDE

10.1 Towards Discrete Universal DEnoiser (DUDE)

The setting is similar to the one before except that we consider an iid input
process: Let X ~ Py represent a source symbol and let IIj x|z denote the
DMC channel matrix, where 7(z, z) = P(Z = z|X = ). Let Z ~ Pz denote the
output symbol. Then, by total probability theorem, Py (z) = Py(x)m(x, 2),
or P = PTIL

Let’s first assume that |X| = |Z| and that the DMC matrix II is invertible.
Then we have P¥ = PITI71.

M-TP.)(z)r(x, 2)
Pz(Z)

Define 7, as the column of IT that corresponds to the symbol z:

m(x1,2)

(22, 2)
T, =

(x| %, 2)

Further, for vectors vy,v, € R", define v; ® v € R™ as the component-wise
multiplication of v; and v (also called Schur Product): (v1 ® va); = v1,v2;.

Then "
H7 PZ @ T
Px\ge, = ————F—— 10.1
Since the input is iid and the channel is memoryless, symbol by symbol
decoding is optimal. The optimal denoising function is the one that satisfies

Gopt(z) = arg mgn EANX,¢9(Z)) (10.2)

85
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We proved in the previous lecture that ¢op(z) = XBayes(PX|Z=Z). Hence,
substituting from (10.1),

¢opt(z) = XBayes(HiTPZ © ’/TZ) (103)

Note that the normalization constant Pz(z) that appears in the denominator
of (10.1) can be readily dropped due to the invariance of the Bayes’ response to
multiplication by a scalar.

We will now assume more generally that II is of full row rank (and hence
X < [2]).

In that case, P = PLIl = PLIT = PLII T which yields PL = PLTIT (H HT)_I
where the full row rank condition guarantees the invertibility of IITI”. Thus
(10.3) can be written more generally as

¢opt(z) :XBayes ((H HT)71 nP;® 7Tz)
= arg min )\g [(HHT)71 1IP; ® Wz}
zeX

2 ®(A L, Py, 2) (10.4)

10.2 Our Setup

We now describe our setup. We assume the following:

(a) X, Z, X are finite alphabets representing source, output and reconstruc-
tion symbols respectively.

(b) The source X is unknown.

(¢) The channel is a known DMC. Further, the DMC matrix II is of full
row-rank as described above. Note:

(a) Condition 3 is benign. For example,
i. Binary Symmetric Channel (BSC(d): Condition holds <= ¢ #
1
5-
ii. Binary Erasure Channel (BEC(€)): Condition holds <= € <
1.
iii. Z channel (Z(p)): Condition holds <= p < 1.
Refer fig. 10.1 for a description of these DMCs.

(b) Condition 3 is necessary in the universality setting. Note that in a
universal setting, a decoder can only see the output and is assumed
to know nothing about the input distribution. Hence the decoder
may estimate the output distribution, but cannot directly determine
the input distribution. However one can argue intuitively that to
construct a code that performs as well as Bayes’ optimal solution, the
Denoiser must be able to determine the input distribution uniquely.
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0 del?2 0 0 epsl 0

1 del? 1 epsl

1
Z—channel

Figure 10.1: Discrete denoising system
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The only way one can determine Px is from the matrix equation
PL = PITL. Hence it is reasonable to assume that II is of full row

rank and that [X] < |Z].

(d) A(z,%) > 0 is a loss function. Note that the non-negativity stipulation
entails no essential loss of optimality since any loss function can be made

to satisfy the condition by the addition of a sufficiently large constant.

We now define the Discrete Universal DEnoiser (DUDE). The idea behind

DUDE is to “Correct by the Context”. Define

m(z" 1%, 2] = [{k+1 < <n— k|2itE = (%, 2,7%)} |

Here m is a |Z|—dimensional column vector denoting the count of the symbol

z € Z in the double-sided context [¥, r¥.
The denoiser DUDFE(k) is the function

X, (2" = (AL, m (27, Z74, Z:ﬁ) , %)
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where ®() is given by (10.4) with Py replaced by the context-based count m( ).
Note that, up to an inconsequential normalization constant, m serves as an
estimate of the conditional probability of the output symbol given the context.

10.3 The Setup: Universal Discrete Denoising

As depicted in Fig. 10.2, a sequence z"™ from an unknown source passes through
a discrete memoryless channel (DMC) characterized by a full-row-rank transi-
tion matrix II. The denoiser produces an estimate X™ 50 as to minimize loss as
defined by a given loss matrix A.

X - channel L denoiser B xn

Figure 10.2: Discrete denoising system

10.4 The DUDE’s operation

The denoiser operates in two phases.

(a) In the first pass, it computes the kth-order context statistics m(z", ¥, %),
defined as follows:

m(z", 1%, rF)[2] = Hk+1<i<n—k: ZE = (lk,z,rk)}‘.

In other words, m(z", (¥, %) is a histogram of those elements in z" that
have contexts [* on the left and 7* on the right.

(b) In the second pass, the context statistics are used to denoise z™. Formally,
the kth-order estimate is given by a denoising function ®:

Xi(2") = ®(A, ILm(2", 21 7L 208 ).

® is chosen to be the Bayes response for a source distribution derived
from the channel matrix II and the context statistics. Letting v denote
the context-conditional histogram m(z", zf:,i, zZﬂ“), the Bayes response
takes the form

(I)(A7 IL, v, Z) = XBayes(HiTU ® '/Tz),

where 7, indicates the column of the channel matrix II associated with
the symbol z. For a non-square transition matrix II, II=7 is generalized
to (TITIT)~ L.
® can be made more explicit if we allow Az to denote a column of the loss
matrix A:
O(A, T, v, 2) = argmin \JTT-Tv © 7.
x
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Exercise 10.4.1. Suppose 1l is a binary symmetric channel (BSC) with crossover
probability § < 1/2, and suppose that we are interested in the Hamming loss

function. That is,
1-9 1 0 1
I1= A= .
0 1-90 10

Show the following:

.o v(2) 25(1-9)
2if 55 2 wrasoe

Z otherwise.

DAL v,2) = {

Exercise 10.4.2. Let II be an erasure channel with erasure probability €. That
is, the output alphabet Z is the input alphabet X augmented by an erasure symbol
{e}, and the transition probabilities are given by

H(x,z){ l—cifz==x

eifz=e

Furthermore, assume A is still the Hamming loss matriz, as above. Show ®
outputs z if z is not e, and outputs argmaxv(Z) if z is e.
&

10.5 Choosing the DUDE’s context length

A long context length k is desirable, as more contextual information is incorpo-
rated into the denoising. However, a large context length also results in fewer
counts and, therefore, less reliable context statistics. To be concrete, we select
the following

11
k—kn—{ ogn"7

51log | Z]

which will be justified through the performance guarantees. Denote the resulting
denoiser by X{ypg-

10.6 The DUDE’s Performance

We are interested in both the stochastic and semi-stochastic settings.

10.6.1 The Stochastic Setting

Here, we assume that the source is random, stationary, and possesses an un-
known distribution. The channel is specified by a known transition matrix II.
In this setting, the DUDE is universally optimal in the following sense.
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Theorem 10.6.1. For any stationary process X,

lim L)?n
n—00 DUDE n—oo #neD,,

(X",Z")= lim min ELg,

(X", zZ" =D(X,Z),

where D,, denotes the family of all n-block denoisers.

10.6.2 The Semi-Stochastic Setting

Oftentimes, it is inappropriate to assume that the source is random, let alone
stationary. In the semi-stochastic setting, we assume that the source x is an un-
known deterministic sequence. However, we continue to characterize the channel
as a DMC with a known probability transition matrix II. The distribution of
the noisy data 2" is then given by Pr(Z" = 2™) =[]\, (i, 2;).

To what standard can we compare the DUDE’s performance in this semi-
random context? First, consider the class of all functions f : Z2+1 — X
that estimate a source symbol z; from the received symbol z; and its context
(zf:,i, zfif ). We compare the DUDE’s performance to that of the best element
in this class as selected by a “genie” with access to the input sequence:

—k
1 ¥ ;
Dy(2",2")= min — Z A (x“f(zfj’,j )
pERnisxn S
Theorem 10.6.2. For every sequence X

lim L)?BUDE(:E",Z”) —Dkn(x”,Z")} =0 wp. 1

n—oo

Note that this theorem is stronger than Theorem 3. In fact, as we show
below, Theorem 3 is proven as a corollary to Theorem 4.

10.6.3 A bit of terminology
(a) Let {a,} be a sequence. Then lim sup and lim inf are defined as follows:

limsup a,, = lim,, ,ca, = lim sup a,,.

n—00 =00 y;>n
liminf a,, = lim ap, = lim inf a,,.
n—o0 " oo n—oom>n m

(b)
Exercise 10.6.3. Prove that lim,_,ooa, = lim
lim,, o0 @y, €xists.

an if and only if

n— 00

(¢) Fatou’s Lemma.

Lemma 10.6.4. Let {R,} be a sequence of nonnegative random variables.
Then
E[h7m7z~>ooRn} S h7m71~>ooE[Rn]

c.f. [2] or [3] for a proof.
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10.6.4 Proof of Theorem 1 Using Theorem 2

Proof First, we note that Theorem 4 directly implies

: . noony __ nozny| _
Tim. [LXBUDE(X ,Z") — Dy, (X", Z )} 0w.p. 1.

Next, fix some constant integer [ and take the expectation of the above
expression.

0 = E lim [L

n—oo

e (X" 2") = Di (X7, 27)]
= Elim,_ [Lgn (X", Z") — Dkn(Xn’Zn)}
DUDE

> limy, oo {EL)?BUDE(XnvZ") — EDkn(Xn’Zn)}

> Timnse {EL)?BUDE(X", Z") — EDy(X™, Z")} (10.5)

Line two follows from existence of the limit in question, line three is a conse-

quence of Fatou’s lemma, and line four is true because k,, will eventually exceed

the finite ! (and obviously D;(z™, Z™) > Dy(z™, z"™) for all n, 2™, Z™ and | < k).
‘We now upper bound the rightmost term in 10.5.

n—I
1 .
ED/(X",Z") = E min ;E AXy, f(ZiIh)
AN i—i1

n—l1

< min 1 Z EA(X;, f(Z1))

LzZ2041 % N
[z —X i=l+1

— min AL%EA(Xo7f(Zl—z))
FiEAH X n
n—2l

= “TEU(Py,z1) (10.6)

The second line is valid because the minimum of an expectation is greater than
the expectation of the minimum, the line that follows is due to stationarity,
and the last line follows from the definition of the Bayes Envelope (see lecture
2 notes).

Combining 10.6 and 10.5 yields:

- , 21
lzm"_moEL)?SUDE S nh—>n<§o n EU(PXO‘ZLZ)

The arbitrariness of [ implies

IA

limy,—EL g, lim EU(PXO\ZI_L)

DUDE l—0c0

= D(X,Z) (10.7)
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where Eq. 10.7 is one of the HW exercises.
This completes the proof when combined with the obvious lower bound

EL L2 lim min ELg, =D(X,Z).

lim
zneDn

n—o00 )?S Uy, o0

10.7 The Semi-Stochastic Setting

Here we show the optimality of the DUDE algorithm in the semi-stochastic
setting described in Lecture 4. In particular, we prove Theorem 10.7.1 through
a series of exercises. In the following we assume for simplicity that | X| = | Z| and
hence ®(A,IL,v,2) = )?Bayes((H’Tv) ®1I,). The more general case is handled
similarly.

Theorem 10.7.1. For every sequence x

lim [L;(BUDE(I”, Z") = Dy, (", Z")| =0 w.p. 1

n—oo

We begin by introducing some notation. Let A4, = max, ; Az, &) < oo.
Also, let the count vector ¢ be defined by

q(x",z",u’ik)[] Hk+1<i<n-—k: zl”",j—u b Li = T}

In the following exercise we express the error achieved by the “genie” aided
algorithm using the count vector q.

Exercise 10.7.2. :
(a) Show that

1
Dk(xnvzn) = E Z U(q(fL’n, Zn7ulik))
uk

(b) Write LX,,(xZ+f, ") = 1EZ e A A(zi, Xi(z")).  For any w : 2" x
Z2k+1 5 RIXI et Xn satisfy

Xi(2") = Xpages(w(z",24F))  k+1<i<n—k

Then, ¥Ya™, 2", show that

0 < Lga(aiyy,2") — Di(a", 2 m"leq Juf ) —w(z"ul )|



10.7. THE SEMI-STOCHASTIC SETTING 93

The second part of Exercise 12.4.2 bounds the suboptimality of a Bayes estima-
tor that uses weights w using the ¢1-norm between ¢ and w. Recall that,

Xpupe (")) = Xpayes (T7Tm(=", 27}, 217)) ©11.,)
From part (b) of Exercise 12.4.2 | it then follows that Vz™, e > 0,

A 1axr —
(|LX,, (ac”,Z”)—Dk(x",Z")|>e) <p | 2mez Zqu Zm k(27 u” b, uf) © Ty || > € {10.8)

7k

To estimate the 1 norm of the difference between the count vectors, we

write
q(z™, 2", u* ) Z L
i=k+1
and
I Tm(Z" "y, uf) Oy z] = T Tm(Z2"u k,ulf)[x]l_[(ac uo)
= II(z,up ZH (2, t0)m(Z™, u”}, u¥) i)

= H(x,’u,o)zn_ z, UO Z 1{Zl+k (u” g T0,uk)}
@ i=k+1

In the following exercise, we establish that the random variable (q(2", Z™,u* ) [x] — TT=Tm(Z",u”}, uf)[2](z, ug))

is a sum of the form Z?:k]:_l fi(Z.ifk) where the f; have zero mean.

Exercise 10.7.3. Prove that V2", u* feoandk+1<i<n-—k,

E(1 {Ziw_ukkml_z}) ( T, U ZH (z, o) {Zz+h (™10 u1)}>

We further note that {f;} are not only of zero mean by are also bounded and
that f; and f; are independent when |i — j| > 2k. The following exercise is a
consequence of these properties of {f;} combined with Hoeffding’s inequality.

Exercise 10.7.4. Show that,

P(i‘qu"»”v“’“kﬂxl—H‘Tm(Z”,u_i,u’fnxm(x,uo>}>E> (l Z Fi(Z2)] = >

i=k+1
(n — 2k)é?

< 2(2k+1)exp (—
202k + 1)(1 + [X] [T ] )2,

Hint : Use the mean and depended structure of {f;} noted above, combined
with
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Theorem 10.7.5. (Hoeffding inequality) Let V1, Va, ...V, be independent ran-
dom variables with BV; = 0 and |V;| < ¢ for alli. Then,

1« ne>
P (n;m > e> < 2exp <_202>

cf. [4] for a simple proof of Hoeffding’s inequality.

10.8 The DUDE’s Perfomance

10.8.1 Proof of DUDE’s Optimality in Semi-Stochastic
Setting: Continued

Consider denoisers of the form
X" X, (z"):XBayes (w (z 7zz+£)) k+1<i<n-—k, (10.9)

where w(-,-) takes values in RI*!. Note that DUDE is of this form with w =
wpypg explicitly given by

wpupp(. =) = (U Tm (", 5 ) om. (10.10)

Furthermore, recall that the difference in the average per-symbol loss of the
genie-aided denoiser and a legitimate denoiser with some w is upper-bounded
by where Apmes = max, ; A(z, 2) and g(z", z”,u’ik) is the genie-aided statistic

defined by
a2 ] = (k1 i Sk 2 = pn =)l we X (101)

Now, consider the performance of DUDE in our semi-stochastic setting with a
deterministic " and a random output Z". Note that hereafter we will use a
specific k for DUDE, which is given by

11
8™ | (10.12)

k:kn: = ;
L5log\Z|
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and we will use X bupg and X S’SBE interchangably. Then, we have the following
upper bounds.

. n—=k ny\ _ n n
Pr{\L gtz Dk(x,Z)\Ze}

XBUD
(a) Amaaj n n 7 n
< Pri =" NN g2, 200k ) (2] — wpupe(Z27 b )] > e b
n u’ik zeX
(b) 1 " o n €
< Pr U {n|q(x L 2"k ) [z] — wpupe(Z™ ub )] > M} ’
u’jk,z
(c) 1 n n  k n ok ¢
<2 Pyl 2wt lel —woune(Z" vl 2 g — -
u]ik P max

:=J(z,u’ik)
(10.13)

The inequality (a) holds from (??), and the inequality (b) is obtained by applying
the following union-type bound

m m €

p >l <P {i>7} , 10.14
r(év_e)_ r(!l v_m> ( )

i

and the inequality (c) is a direct result of the union bound. Define a function
B(n,k,e) as

B(n,k,€) 2 2(2k 4+ 1) ex (”_ 2k - ) (10.15)
e €)= P\72k+1 20+ (o102 ) ‘

Then, from the exercise in the previous lecture, each J (m,u’ik), xr € X and
uk, € X1 is upper-bounded by

k €
J ($7U_k) S B (n,k7 M) . (1016)

Since B (n, k, W) in (10.16) does not depend on a particular choice of
u¥, and z, combining (10.13) and (10.16), we have

n— €
Pr{lLg,, . (@58, 2") = Di(a",2")| 2 ¢} < |X[**2B (nk mw) :

(10.17)
Suppose that k is fixed, or grows to infinity, but sufficiently slowly with n. Then,
the RHS of (10.17) can be made to vanish quite quickly as n tends to infinity.
To exploit that fact properly, we need the following lemma.
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Lemma 10.8.1. (Borel-Cantelli Lemma [1]): Let {E,} be a sequence of events
satisfying

Z Pr(E,) < oo, (infinitely summable) (10.18)

n=1

and define limsup,, ... of E,, as

limsup E,, £ ﬁ ( G Em) : (10.19)

n=1 \m=n
Note that limsup,,_, . E, can be interpreted as the event that infinitely many of
the events {E,} occur. Then,

Pr(limsup E,,) = 0. (10.20)

n—oo

Proof By the definition, (10.19), for every m,

PQlimsupE,) < P(| | E,) < S P(E,). 10.21

tmsup ) < P B) < 3 P(5) (1021)
Since the LHS of (10.21) is independent of m, it is bounded by the limit of the
RHS as m — oo, which is 0 by (10.18). O

Exercise 10.8.2. Let C(n, k,€) denote the RHS of (10.17). Then, verify that

Z C(n,k,e) < oo, forany €>0, (10.22)

n=1
when k =k, as in (10.12).
Let now FE,, be the event
. n—=k ny _ n n
L3 (231, 2") = Dy (2", 2") | > €. (10.23)

Then, combining the result of Exercise 10.8.2 and (10.17), we have

i Pr(E,) < i C(n, k,e) < o0. (10.24)

Using Borel-Cantelli Lemma, we have
. N n—k on) _ n on _
Pr (nlLH;O sup |LXBUDE (xp 0, Z2") = Dy (2™, 27) | > e) =0 wpl (10.25)
implying
lim Lg, (2piy,2") = Dy (2", Z") =0 w.p.l, (10.26)

n— oo

by the arbitrariness of € > 0. This completes the optimality proof of DUDE in
the semi-stochastic setting.
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10.9 Lower Limits of Discrete Universal Denois-
ing

If we look at the DUDE algorithm from previous lectures, the loss incurred by
DUDE is not much worse than that of the best k*" order sliding window denoiser.
Compared to the benchmark (the best k' order sliding window denoiser), is
there another denoiser whose excess loss is much smaller than that incurred by
the DUDE? To answer this question, we will derive a lower bound on the excess
loss of any denoiser compared to the same benchmark.

10.9.1 Background and Notation

The alphabet of the noiseless signal, as well as the noisy observation and the
reconstruction is a M-letter alphabet, denoted by A. Denote [](,5) the prob-
ability of the output symbol j when the input symbol is i. We assume a given
loss function A : A% — [0,00), where A(4,j) defines the loss incurred by es-
timating the symbol 7 with the symbol j. An n-block denoiser is a mapping
X" A" — A" Let L (2", 2"™) denote the normalized cumulative loss when
the underlying noiseless sequence is ™ and the observed sequence is 2™ € A,
ie.,

Ly (2", 2") = % Z A (z X”(z”)[i]) (10.27)

A k-th order sliding window denoiser X™ is a denoiser that is defined by a

mapping
I AR+ s g

so that for all z™ € A"
X"z =f (2FF), i=k+1,.,n—k

Let Sk be the collection of all k' order sliding window denoiser.

Question: Is k*" order DUDE in S,?
The answer is No. Fix a z" sequence, DUDE acts like a k*" order sliding window
denoiser for that sequence. But in general, for different z” sequences, DUDE
applies different sliding window denoiser.

The k' order minimum loss of (x",z") is defined as

Dela,2") = iy Lo @iy, ")
k
n—=k )
> M, f(25). (10.28)

i=k+1

1
min
frAzktl A n — 2k

The expected k" order minimum loss is defined as

Dy(z") 2 E[Dp(2", Z")] (10.29)
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This quantity is the benchmark against which we will compare the loss incurred
by other denoisers. Finally, the k*® order regret Ry (X™) of any n-block denoiser
is defined as follows:

Ri(X") = max (E[L @ik ZM) = Dy, (x”)) (10.30)

Specifically, we know that the k' order regret of DUDE is upper-bounded by

I, kM 2k
Rk(XD,IIJCDE) <C

n

The question we are going to answer in this lecture is whether there exists
any denoiser which gives significantly better regret. We will show that for (all
sufficiently large n), and any X"

~ ~ ak
"> C0—.
Fa(X") 2 €

No denoiser can make regret approaching zero faster than O(%)

10.9.2 Main Result

Let X be a sequence of i.i.d. random variables with P denoting the distribution
of X;. The quantity E[L, (X", Z")] — Dyp(X™) is then a random variable. A
key observation is that we can use the expectation of this random variable to
lower bound the regret, i.e.,

Ri(X™) > E [E[Lg. (X", 2M)] — ﬁk(X")} —E[Lg. (X", 2")] —E {ﬁk(X")}
The first term on the RHS of above equation can be lower bounded as

E[Lgn (2", 2")) = minE[L g, (X", Z2")]
X’n,

The minimizer is the Bayes response, i.e.,
o LN _ : T
X"l = argminXE Py,

. AT(]P’@?TZJ

@n PTr,,
Then the optimal loss becomes
Dopy (P) = min AL Py,
Using Doy , the kth order regret is lower bounded by

Ri(X™) > Dopi(P) — E[Dy(X™)] (10.31)
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10.9.3 BSC example

X o 5!
' | P 2
0 P<d
when zi =1, Xopt(z")(i) = 1 P>
either P =¢
0 P<1-6§
when 2 =0, Xope(2™)()={ 1 P>1-9§

either P=1-§

We can get Xopt and Doy (P)by combining two cases

”always say 0” P<$§
Xopt = { 7say what yousee” < P<1-§
”always say 17 P>1-9§
P P<$
Dopt(P) = § §<P<1-9¢

1-P P>1-9§

Observe that when P = §, the crossover probability, there are two Bayes optimal
denoisers, namely, the “always say 0” and the “say-what-you-see” denoiser. We
will try to lower bound the regret for P = .

1-6
0

, Ri(X™)>6— E[min Lg¢(X™, 2Z")]

when P =
Xes

The second term of the RHS of the above equation can be handled as follows:

E[min LX(X",Z”)} < Emin{Luwayso(X", Z"), Lswys(X", Z")}]
XeSo

= E min{%Zl{Xi = 1}7%21{& £ Z;}}
1 T 1 «
= 0+ ﬁE mln{% ;(1{)(1‘ =1} —9), NG ;(1{)@ # Zi} —0)}

Note that ﬁ S (H{X; =1} —6) and % S (X, # Z;} — 6) are sums
of independent random variables. Further each set of random variables are
independent of each other. Therefore, by the Central Limit Theorem, they
coverge in distribution to independent zero mean Gaussian random variables

(N(0,6(1 —9))).
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Therefore,

C
E[min L¢(X", Z")|~0——, C>0.
[XEsU x( )] Tn

Now we have

. (10.32)

10.9.4 Proof of Lower bound

Definition: (m, A) is neutralizable if 3 channel output symbol t € A, s.t. for
some P € M ( M : simplex M-dimensional)

(a) AT (PO m) =A(POm) =ming A (PO )
) N—=X)OPoOm#0
Further the distribution P that satisfies the two equations is termed loss-neutral.

Theorem 10.9.1. : For any neutralizable (m,\), and any sequence of denoisers

{X}
Ru(X (Z,/(P* 7)) (Lol

where P* is any loss-neutral distribution and C is a positive function of (w, \)
and P*.

Proof: Let
[{i: 2% = c* )z = )
n ,n .k _ k k> h
q(2", 2", ¢ ))[o] ok , where «a€ A.
Suppose X" is iid with X; ~ P
E[q(zni z", C’ik)] = (Po 7Tco)1_15’6:—lcp’]r7'r01
i£0
1 n—k
n .n _ i+k
Dy (2", 2") = T 2kl;rlA(ycl,f(z )

- Z mmZA], q(z", 2™, )]

ok e A1

o . T n n k

= E gg«})\i,q(z yx )
ey

Definition: Xi,..., X, is m-dependent if for all s > r +m, Xq,..., X, and
X, ..., X, are independent
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Theorem 10.9.2. For a stationary m-dependent sequence X™ s.t. E[X;] =0
and E[|X;]?] < oo,

\}E;Xi%N(O,V), as n — oo,

where V = B[X?] + 20 B[X1, X}]

This theorem is proved by Hoeffding and Robbins [5]. The following lemma
is a consequence of the theorem. The proof of the lemma can be found in [6].

Lemma 10.9.3. X" is uid and X; ~ P. Then, for any o € R"™ and any
* e A st oT(POT,.,) =0,

[aV
nlLII;OE[p [\/ﬁ’aTq(z"7$”,Clik)H = OZT

where V = (a ® a)T(P © 7,) Hf:—k,i;ﬁo Plr,,.

Let us complete the proof of Theorem 1.
Recall Eq. 10.31,

If X; ~P* — loss-neutral w.r.t. (m, A;, Aj),

Re(X™) > ) min M (P* @ 7ey) — E[Dr(X™))] (10.33)

coeA

Let us find an upper bound for the second term of R.H.S. of the above equation.

E[Dr(X")] E[Dy(X"™, Z")]

E min Al q(Z™, X", c*
zEA v k
Ckk

> EminATg(z", X", cE)l+ D Elmin Afe(2", XT1654)

& k —
c? i coF#t ¢y co=t

The first term on the R.H.S. of Eq. 10.34 can be upper bounded as follows:

Emin Al q(Z", X", ")) < in B\ q(Z", X", ¢
Y. EminA{g(z",X".ch)] < D7 minBPg(Z", X", k)]

ch, co#t ek cot
k
. T
= Z min M(Po 7., . H P 7,
ek, co#t 1=—k,i#0
= > min MA(P O 7e,) (10.35)

coFt
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The second term on the R.H.S. of Eq. 10.34 can be upper bounded in the
following way:

> E {ggiy?q(Z”,X",c’“k)
Clik,C[]:t

< > E[min{Aq(Z", X", ")) A q(2", X", k)Y

K _
¥ piCo=t

QDY (ETalzn Xn ]+ ENT (27, X7 k)]~ E (|- A Ta(2, X7 ek )] ])

k —
¢t ,co=t

k

¢ p,co=t

¢ C(1+o0(1) [2Ver,

© ;%iﬁAg(PQWt)f > (:;?f( ) {k (10.36)
c'ik,m:t

where Vi = (A = Aj) @ (A = A)T(P © 7e) [T 4 i0 PP e, (a) follows

because min{z,y} = Hy%mfy‘, (b) follows from the defintion of neutralizable
and loss-neutrality, and (c) is due to Lemma 3.

Finally, substituting Eq. 10.35 and Eq. 10.36 into Eq. 10.34 and then using
the obtained upper bound of E[Dy(X™)] in Eq. 10.33, we have

Rk(Xn) Z Dopt(]P) - E[ﬁk(Xn)]

1+o0(1 2Vex
ijn)\g(ﬂj’@ﬂ't)mejn)\g(]P’@m)+M Z _ Sk
k ¢ k ‘

ct ct \/ﬁ c’ik,cozt T
(1 1)) [2Ver
= ¥ (1+0(1)) k| (10.37)
. . Vn ™
ClprC0=

Observe that

2V x T ¥ T '
3 \/7—\/%((&4»@(&—&)) Erom) > (Hﬂp’*) “) -

ck, AR o=t a?kbeA2k \i=1

Note that since P* is a loss-neutral distribution (A; — A;) @ P* @ m # 0, and
therefore

(Ni=X) 0N —X)T (Pom) >0.
Also observe that

s (fere) - (SyvEm)

ake A2k \i=1 acA

For more details and discussions see [6].
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10.10 Some concluding remarks on DUDE

We have studied DUDE in the setup of the universal discrete denoising with
a known channel: how it works and what is the performance it can achieve.
It is shown that, with the jointly stationary process (X,Z), DUDE can do
remarkably well compared to the optimal denoiser, which can access both to
the noisy output sequence and the underlying clean source sequence. Indeed,
in the limit of n tends to infinity, DUDE with the context length k,, XS{}CBE,
can achieve the same performance as the optimal denoiser of the same context
length in terms of the average per-symbol loss. We conclude this section with
some discussion on the context length and the non-asymptotic performance of
DUDE.

10.10.1 Context Length of DUDE

So far we have considered the explicit context length of k, = L%ﬁ;ﬁ?d to be
concrete with our analysis. However this is not necessarily the best k, that we
can choose, and indeed we can do better choices based on more refined analysis.

Here are some theoretical and practical guidelines for choosing k,,.

Remark

a) The relation k,|Z|?*» = o(nlogn) can be shown to be sufficient for the
validity of the Theorem 2, by using a better exponential-type bound (2, 3],
which decreases more rapidly w.r.t k,. So, e.g., k, = cl(l)%lgl, c < %,

suffices to guarantee that DUDE competes with the genie of order k,.

Note that this is true despite the fact that k,|Z|?*» does not suffice to

guarantee the convergence of the union bound in (10.17).
b) In practice, k,, can be determined in various ways.

- Data-dependent selection
We can rely on a compressibility heuristic to try a number of different
context lengths and select the k,, resulting in the most compressible
reconstruction, or dynamic context of the data can be taken into
account, meaning that k, may vary depending on the location of a
symbol that we want to denoise.

- Other possible tweaks

We can perform context aggregation or iterated DUDE to improve the
denoising performance. In particular, in case of the iterated DUDE,
the equivalent channel becomes no longer memoryless as the number
of iteration increases, and we cannot use the same technique used in
DMC to analyze the performance of DUDE. However, some empirical
results show that the denoising performance can be improved up to
a certain number of iterations.
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10.10.2 Non-Asymptotic Performance

In practice the sequence length n is fixed and finite, thus the asymptotic per-
formance of DUDE with n tending to infinity may not be a useful performance
indicator. Therefore, we present the non-asymptotic upper bound and lower
bound on the average per-symbol loss of DUDE as

e Non-asymptotic upper bound

E[LXDUDE(gc ,Z") — Dy (2", Z )] <Oy [T, V2" and k

(10.38)
e Non-asymptotic lower bound
H;%XE |:LXDUDE (2", Z2") — Dy (2™, Z )} >C- ﬁ’ c>1, Vk
(10.39)

where C, and C; are some constants, which only depend on II and A. See [6]
for the details.
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