
Chapter 9

Discrete Denoising

9.1 Discrete Denoising

Z
channel denoiserX Xh

Figure 9.1: Discrete denoising system

We consider the discrete denoising system shown in Figure 9.1. The clean
source X = (X1, X2, . . .) (or (. . . , X−1, X0, X1, . . .) if X is a double-sided se-
quence) is corrupted by a noisy channel. The denoiser observes the output of
the channel Z = (Z1, Z2, . . .) (or double-sided (. . . , Z−1, Z0, Z1, . . .)) and recon-

structs the sequence X̂ = (X̂1, X̂2, . . .) (or double-sided (. . . , X̂−1, X̂0, X̂1, . . .)).

The sequences X, Z, and X̂ are discrete, that is, Xi ∈ X , Zi ∈ Z, X̂i ∈ X̂ ,
and X , Z, and X̂ are finite alphabets. We are interested in sequences of
block length n and denote the n-block source sequence, noisy sequence, and
reconstruction sequence by Xn = (X1, X2, . . . , Xn), Z

n = (Z1, Z2, . . . , Zn), and
X̂n = (X̂1, X̂2, . . . , X̂n), respectively. Now we introduce some definitions.

Definition 9.1.1. An “n-block denoiser” is a mapping X̂n : Zn → X̂n.

There are some other terms used through the literature: estimation, non-
causal filtering, and smoothing. Given a “loss function” or “distortion criterion”
Λ : X×X̂ → [0,∞) e.g. Hamming loss, and given denoiser X̂n(·), and particular
sequences xn and zn, define the per-symbol loss

LX̂n(x
n, zn) =

1

n

n∑
i=1

Λ(xi, X̂
n(zn)[i]),

where X̂n(zn)[i] is the i-th component of the n-tuple X̂n(zn), and it can also
be denoted by X̂i(z

n). If (Xn, Zn) are jointly distributed according to some
distribution, then ELX̂n(Xn, Zn) is our measure of performance.
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9.2 Optimum Performance

We first present some notation for probability distributions. If A is a discrete
random variable, then PA(a) = Pr(A = a) is the probability mass function of
A. Assume that A ∈ A and the alphabet set A =

{
a1, a2, . . . , a|A|

}
is ordered.

Then PA is a column vector of dimension |A| with i-th component PA(ai). Given
another jointly distributed random variable B, define the conditional probability
of A given B as

PA|B(a) = Pr(A = a|B) = E
[
1{A=a}

∣∣B] .
The column vector PA|B is thus a random simplex vector of dimension |A|. We
need the following definitions to characterize the optimum performance.

Definition 9.2.1. The “Bayes envelope” of PX is defined as

U(PX) = min
x̂∈X̂

∑
x∈X

PX(x)Λ(x, x̂) = min
x̂∈X̂

EΛ(X, x̂) = min
x̂∈X̂

PT
Xλx̂,

where λx̂ is the column of the loss matrix associated with x̂:

λx̂ =

⎛⎜⎜⎜⎜⎝
Λ (a1, x̂)

Λ (a2, x̂)

...

Λ
(
a|A|, x̂

)

⎞⎟⎟⎟⎟⎠ .

The Bayes envelope is the minimum expected loss achievable in guessing the
value of X ∼ PX . We generalize the definition to accommodate any vector v of
dimension |X |: U(v) = minx̂∈X̂ vtλx̂.

Definition 9.2.2. The minimizer of the Bayes envelope is called the “Bayes
response”

X̂Bayes(v) = argmin
x̂∈X̂

vTλx̂,

where ties are resolved lexicographically, that is, the symbol with the smallest
index is chosen. Note that X̂Bayes(v) = X̂Bayes(αv) ∀α > 0.

Exercise 9.2.3. Show that the Bayes envelope has the following properties.

(a) U(·) is concave.

(b) “Data processing inequality”: If Y = f(Z), then EU
(
PX|Z

) ≤ EU
(
PX|Y

)
.

(c) Generalize (b) to X−Z−Y , that is, X and Y are conditionally independent
given Z.

Now we can express the optimum performance in terms of the Bayes enve-
lope.



9.3. OPTIMUM PERFORMANCE FOR STATIONARY SOURCES 79

Theorem 9.2.4. If (Xn, Zn) are arbitrarily jointly distributed, then

min
X̂n∈Dn

ELX̂n(X
n, Zn) =

1

n

n∑
i=1

EU
(
PXi|Zn

)
,

where Dn is the set of all n-block denoisers. The minimum is achieved by
X̂i(Z

n) = X̂Bayes

(
PXi|Zn

)
.

Proof For any n-block denoiser, the per-symbol loss is equal to

ELX̂n(X
n, Zn) =

1

n

n∑
i=1

EΛ
(
Xi, X̂i(Z

n)
)

=
1

n

n∑
i=1

E
[
E
[
Λ
(
Xi, X̂i(Z

n)
)∣∣∣Zn

]]
=

1

n

n∑
i=1

E

[∑
x∈X

PXi|Zn(x)Λ(x, X̂i(Z
n))

]
(a)

≥ 1

n

n∑
i=1

E

[
min
x̂∈X̂

∑
x∈X

PXi|Zn(x)Λ(x, x̂)

]

=
1

n

n∑
i=1

EU(PXi|Zn),

where the last equality follows from the definition of the Bayes envelope U(PXi|Zn).
The equality in (a) is achieved by

X̂i(Z
n) = argmin

x̂∈X̂

∑
x∈X

PXi|Zn(x)Λ(x, x̂) = X̂Bayes

(
PXi|Zn

)

9.3 Optimum Performance for Stationary Sources

If the clean source process and the noisy process are jointly stationary, we are
interested in the optimum performance of n-block denoiser as n→∞.

Definition 9.3.1. Suppose that (X,Z) = {(Xi, Zi)}∞i=−∞ are jointly stationary.
Define “denoisability of X based on Z” as

D(X,Z) = lim
n→∞ min

X̂n∈Dn

ELX̂n(X
n, Zn) (9.1)

The following exercises show properties of D(X,Z).
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Exercise 9.3.2. Prove that the limit in (9.1) exists.
Hint:

(a) A sequence {an}n≥1 is called “sub-additive” if an+m ≤ an + am.

(b) “Sub-additive lemma:” ∀ sub-additive sequence {an}, limn→∞(an/n) ex-
ists and is equal to infn≥1(an/n).

Exercise 9.3.3. Prove D(X,Z) = EU(PX0|Z).
Hint:

(a) D(X,Z) ≤ EU(PX0|Zm
−k

) ∀k,m > 0, where

Zn
m =

{
(Zm, Zm+1, . . . , Zn) if m ≤ n,

∅ otherwise.

Note that, by stationarity, EU(PXi|Zn) = EU(PXi|Zn−i
−(i−1)

).

(b) D(X,Z) ≥ EU(PX0|Z).

(c) lim
m→∞
k→∞

EU(PX0|Zm
−k

) = EU(PX0|Z).

Although the optimum performance can be expressed in terms of the Bayes
envelope and is achieved by the corresponding Bayes response, usually it is diffi-
cult to compute the Bayes response X̂Bayes(PXi|Z) given the source distribution
PXn and the noisy channel PZn|Xn . In addition, the source distribution PXn is
unknown in practice.
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Table 9.1: Qualitative comparison of compression and denoising

Compression Denoising

minE

[
1

n
ln(X

n)

]
1 min

X̂n∈Dn

ELX̂n(X
n, Zn)

(
Achiever of min: Huffman Code

tailored to PXn

) (
Achiever of min: X̂i(Z

n) =

X̂Bayes(PXi|Zn)
)

=
1

n
H(Xn) + o(n)

=
1

n

n∑
i=1

H(Xi|Xi−1) =
1

n

n∑
i=1

EU(PXi|Zn)

n→∞−→ H(X0|X−1
−∞) 2

= E

[
1

PX0|X−1
−∞

(X0)

]
n→∞−→ EU(PX0|Z)

3

To summarize, we make an analogy between the concepts we have just seen
and the familiar ones from information theory.

9.4 Caveats

(a) Computation of Posterior Distribution is hard. Bayes’ rule gives

PXi|Zn(xi) =

∑
xn\i PXn(xn)PZn|Xn(zn)∑
xn PXn(xn)PZn|Xn(zn)

where xn\i = (x1, x2, . . . xi−1, xi+1, . . . xn). For certain special cases, the
computation is less complex. Example: For a Markov source corrupted by
DMC, the posterior distribution can be computed efficiently using forward-
backward Recursion which is an instance of Dynamic Programming.

(b) Bayes’ optimal solution requires the knowledge of the prior distribution
which is rarely available in practice.

1The minimization is over all length functions associated with uniquely decodable codes
for Xn.

2Assuming that X is stationary (see [1, Chapter 4]).
3Assuming that (X,Z) are jointly stationary.
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These drawbacks call for a low complexity universal Denoiser, one that will
essentially achieve optimum performance for any prior.
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Chapter 10

DUDE

10.1 Towards Discrete Universal DEnoiser (DUDE)

The setting is similar to the one before except that we consider an iid input
process: Let X ∼ PX represent a source symbol and let Π|X |×|Z| denote the
DMC channel matrix, where π(x, z) = P (Z = z|X = x). Let Z ∼ PZ denote the
output symbol. Then, by total probability theorem, PZ(z) =

∑
x Px(x)π(x, z),

or PT
Z = PT

XΠ.
Let’s first assume that |X | = |Z| and that the DMC matrix Π is invertible.

Then we have PT
X = PT

Z Π−1.

PX|Z=z(x) =
PX(x)π(x, z)

PZ(z)

=
[Π−TPz](x)π(x, z)

PZ(z)

Define πz as the column of Π that corresponds to the symbol z:

πz =

⎛⎜⎜⎜⎜⎝
π(x1, z)

π(x2, z)

...

π(x|X |, z)

⎞⎟⎟⎟⎟⎠
Further, for vectors v1, v2 ∈ Rn, define v1 
 v2 ∈ Rn as the component-wise
multiplication of v1 and v2 (also called Schur Product): (v1 
 v2)i = v1iv2i.

Then

PX|Z=z =
Π−TPZ 
 πz

PZ(z)
(10.1)

Since the input is iid and the channel is memoryless, symbol by symbol
decoding is optimal. The optimal denoising function is the one that satisfies

φopt(z) = argmin
φ

EΛ(X,φ(Z)) (10.2)
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We proved in the previous lecture that φopt(z) = X̂Bayes(PX|Z=z). Hence,
substituting from (10.1),

φopt(z) = X̂Bayes(Π
−TPZ 
 πz) (10.3)

Note that the normalization constant PZ(z) that appears in the denominator
of (10.1) can be readily dropped due to the invariance of the Bayes’ response to
multiplication by a scalar.

We will now assume more generally that Π is of full row rank (and hence
|X | ≤ |Z|).

In that case, PT
Z = PT

XΠ⇒ PT
Z ΠT = PT

XΠΠT which yields PT
X = PT

Z ΠT
(
ΠΠT

)−1

where the full row rank condition guarantees the invertibility of ΠΠT . Thus
(10.3) can be written more generally as

φopt(z) =X̂Bayes

((
ΠΠT

)−1
ΠPZ 
 πz

)
= argmin

x̂∈X̂
λT
x̂

[(
ΠΠT

)−1
ΠPZ 
 πz

]
� Φ(Λ,Π, PZ , z) (10.4)

10.2 Our Setup

We now describe our setup. We assume the following:

(a) X , Z, X̂ are finite alphabets representing source, output and reconstruc-
tion symbols respectively.

(b) The source X is unknown.

(c) The channel is a known DMC. Further, the DMC matrix Π is of full
row-rank as described above. Note:

(a) Condition 3 is benign. For example,

i. Binary Symmetric Channel (BSC(δ): Condition holds ⇐⇒ δ 
=
1
2 .

ii. Binary Erasure Channel (BEC(ε)): Condition holds ⇐⇒ ε <
1.

iii. Z channel (Z(p)): Condition holds ⇐⇒ p < 1.

Refer fig. 10.1 for a description of these DMCs.

(b) Condition 3 is necessary in the universality setting. Note that in a
universal setting, a decoder can only see the output and is assumed
to know nothing about the input distribution. Hence the decoder
may estimate the output distribution, but cannot directly determine
the input distribution. However one can argue intuitively that to
construct a code that performs as well as Bayes’ optimal solution, the
Denoiser must be able to determine the input distribution uniquely.
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Figure 10.1: Discrete denoising system

The only way one can determine PX is from the matrix equation
PT
Z = PT

XΠ. Hence it is reasonable to assume that Π is of full row
rank and that |X | ≤ |Z|.

(d) Λ(x, x̂) ≥ 0 is a loss function. Note that the non-negativity stipulation
entails no essential loss of optimality since any loss function can be made
to satisfy the condition by the addition of a sufficiently large constant.

We now define the Discrete Universal DEnoiser (DUDE). The idea behind
DUDE is to “Correct by the Context”. Define

m(zn, lk, rk)[z] =
∣∣{k + 1 ≤ i ≤ n− k|zi+k

i−k = (lk, z, rk)
}∣∣

Here m is a |Z|−dimensional column vector denoting the count of the symbol
z ∈ Z in the double-sided context lk, rk.

The denoiser DUDE(k) is the function

X̂i (Z
n) = Φ

(
Λ,Π,m

(
zn, zi−1

i−k, z
i+k
i+1

)
, zi
)
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where Φ( ) is given by (10.4) with PZ replaced by the context-based count m( ).
Note that, up to an inconsequential normalization constant, m serves as an
estimate of the conditional probability of the output symbol given the context.

10.3 The Setup: Universal Discrete Denoising

As depicted in Fig. 10.2, a sequence xn from an unknown source passes through
a discrete memoryless channel (DMC) characterized by a full-row-rank transi-

tion matrix Π. The denoiser produces an estimate X̂n so as to minimize loss as
defined by a given loss matrix Λ.

Z
channel denoiserX Xh

Figure 10.2: Discrete denoising system

10.4 The DUDE’s operation

The denoiser operates in two phases.

(a) In the first pass, it computes the kth-order context statistics m(zn, lk, rk),
defined as follows:

m(zn, lk, rk)[z] =
∣∣{k + 1 ≤ i ≤ n− k : zi+k

i−k = (lk, z, rk)
}∣∣ .

In other words, m(zn, lk, rk) is a histogram of those elements in zn that
have contexts lk on the left and rk on the right.

(b) In the second pass, the context statistics are used to denoise zn. Formally,
the kth-order estimate is given by a denoising function Φ:

X̂i(z
n) = Φ(Λ,Π,m(zn, zi−1

i−k, z
i+k
i+1 ), zi).

Φ is chosen to be the Bayes response for a source distribution derived
from the channel matrix Π and the context statistics. Letting v denote
the context-conditional histogram m(zn, zi−1

i−k, z
i+k
i+1 ), the Bayes response

takes the form
Φ(Λ,Π, v, z) = X̂Bayes(Π

−T v 
 πz),

where πz indicates the column of the channel matrix Π associated with
the symbol z. For a non-square transition matrix Π, Π−T is generalized
to (ΠΠT )−1Π.

Φ can be made more explicit if we allow λx̂ to denote a column of the loss
matrix Λ:

Φ(Λ,Π, v, z) = argmin
x̂

λT
x̂Π

−T v 
 πz.
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Exercise 10.4.1. Suppose Π is a binary symmetric channel (BSC) with crossover
probability δ < 1/2, and suppose that we are interested in the Hamming loss
function. That is,

Π =

(
1− δ δ

δ 1− δ

)
,Λ =

(
0 1

1 0

)
.

Show the following:

Φ(Λ,Π, v, z) =

{
z if v(z)

v(z) ≥ 2δ(1−δ)
δ2+(1−δ)2

z otherwise.

Exercise 10.4.2. Let Π be an erasure channel with erasure probability ε. That
is, the output alphabet Z is the input alphabet X augmented by an erasure symbol
{e}, and the transition probabilities are given by

Π(x, z) =

{
1− ε if z = x

ε if z = e
.

Furthermore, assume Λ is still the Hamming loss matrix, as above. Show Φ
outputs z if z is not e, and outputs argmax

x̂
v(x̂) if z is e.

10.5 Choosing the DUDE’s context length

A long context length k is desirable, as more contextual information is incorpo-
rated into the denoising. However, a large context length also results in fewer
counts and, therefore, less reliable context statistics. To be concrete, we select
the following

k = kn =

⌈
1

5

log n

log |Z|
⌉
,

which will be justified through the performance guarantees. Denote the resulting
denoiser by X̂n

DUDE.

10.6 The DUDE’s Performance

We are interested in both the stochastic and semi-stochastic settings.

10.6.1 The Stochastic Setting

Here, we assume that the source is random, stationary, and possesses an un-
known distribution. The channel is specified by a known transition matrix Π.
In this setting, the DUDE is universally optimal in the following sense.
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Theorem 10.6.1. For any stationary process X,

lim
n→∞L

̂Xn
DUDE

(Xn, Zn) = lim
n→∞ min

x̂n∈Dn

EL
̂Xn(X

n, Zn) = D(X,Z),

where Dn denotes the family of all n-block denoisers.

10.6.2 The Semi-Stochastic Setting

Oftentimes, it is inappropriate to assume that the source is random, let alone
stationary. In the semi-stochastic setting, we assume that the source x is an un-
known deterministic sequence. However, we continue to characterize the channel
as a DMC with a known probability transition matrix Π. The distribution of
the noisy data zn is then given by Pr(Zn = zn) =

∏n
i=1 Π(xi, zi).

To what standard can we compare the DUDE’s performance in this semi-
random context? First, consider the class of all functions f : Z2k+1 → X̂
that estimate a source symbol xi from the received symbol zi and its context
(zi−1

i−k, z
i+k
i+1 ). We compare the DUDE’s performance to that of the best element

in this class as selected by a “genie” with access to the input sequence:

Dk(x
n, zn) = min

f :Z2k+1→ ̂X

1

n

n−k∑
i=k+1

Λ
(
xi, f(z

i+k
i−k)

)
Theorem 10.6.2. For every sequence x

lim
n→∞

[
L

̂Xn
DUDE

(xn, Zn)−Dkn(x
n, Zn)

]
= 0 w.p. 1

Note that this theorem is stronger than Theorem 3. In fact, as we show
below, Theorem 3 is proven as a corollary to Theorem 4.

10.6.3 A bit of terminology

(a) Let {an} be a sequence. Then lim sup and lim inf are defined as follows:

lim sup
n→∞

an = limn→∞an ≡ lim
n→∞ sup

m≥n
am.

lim inf
n→∞ an = limn→∞an ≡ lim

n→∞ inf
m≥n

am.

(b)

Exercise 10.6.3. Prove that limn→∞an = limn→∞an if and only if
limn→∞ an exists.

(c) Fatou’s Lemma.

Lemma 10.6.4. Let {Rn} be a sequence of nonnegative random variables.
Then

E[limn→∞Rn] ≤ limn→∞E[Rn].

c.f. [2] or [3] for a proof.
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10.6.4 Proof of Theorem 1 Using Theorem 2

Proof First, we note that Theorem 4 directly implies

lim
n→∞

[
L

̂Xn
DUDE

(Xn, Zn)−Dkn
(Xn, Zn)

]
= 0 w.p. 1.

Next, fix some constant integer l and take the expectation of the above
expression.

0 = E lim
n→∞

[
L

̂Xn
DUDE

(Xn, Zn)−Dkn
(Xn, Zn)

]
= Elimn→∞

[
L

̂Xn
DUDE

(Xn, Zn)−Dkn
(Xn, Zn)

]
≥ limn→∞

[
EL

̂Xn
DUDE

(Xn, Zn)− EDkn
(Xn, Zn)

]
≥ limn→∞

[
EL

̂Xn
DUDE

(Xn, Zn)− EDl(X
n, Zn)

]
(10.5)

Line two follows from existence of the limit in question, line three is a conse-
quence of Fatou’s lemma, and line four is true because kn will eventually exceed
the finite l (and obviously Dl(x

n, Zn) ≥ Dk(x
n, zn) for all n, xn, Zn and l ≤ k).

We now upper bound the rightmost term in 10.5.

EDl(X
n, Zn) = E min

f :Z2l+1→ ̂X

1

n

n−l∑
i=l+1

Λ(Xi, f(Z
i+l
i−l))

≤ min
f :Z2l+1→ ̂X

1

n

n−l∑
i=l+1

EΛ(Xi, f(Z
i+l
i−l))

= min
f :Z2l+1→ ̂X

n− 2l

n
EΛ(X0, f(Z

l
−l))

=
n− 2l

n
EU(PX0|Zl

−l
) (10.6)

The second line is valid because the minimum of an expectation is greater than
the expectation of the minimum, the line that follows is due to stationarity,
and the last line follows from the definition of the Bayes Envelope (see lecture
2 notes).

Combining 10.6 and 10.5 yields:

limn→∞EL
̂Xn
DUDE

≤ lim
n→∞

n− 2l

n
EU(PX0|Zl

−l
)

= lim
n→∞EU(PX0|Zl

−l
).

The arbitrariness of l implies

limn→∞EL
̂Xn
DUDE

≤ lim
l→∞

EU(PX0|Zl
−l
)

= D(X,Z) (10.7)
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where Eq. 10.7 is one of the HW exercises.
This completes the proof when combined with the obvious lower bound

limn→∞EL
̂Xn
DUDE

≥ limn→∞ min
x̂n∈Dn

EL
̂Xn = D(X,Z).

10.7 The Semi-Stochastic Setting

Here we show the optimality of the DUDE algorithm in the semi-stochastic
setting described in Lecture 4. In particular, we prove Theorem 10.7.1 through
a series of exercises. In the following we assume for simplicity that |X | = |Z| and
hence Φ(Λ,Π, v, z) = X̂Bayes((Π

−T v)
 Πz). The more general case is handled
similarly.

Theorem 10.7.1. For every sequence x

lim
n→∞

[
L

̂Xn
DUDE

(xn, Zn)−Dkn(x
n, Zn)

]
= 0 w.p. 1

We begin by introducing some notation. Let Λmax = maxx,x̂ Λ(x, x̂) < ∞.
Also, let the count vector q be defined by

q(xn, zn, uk
−k)[x] = |{k + 1 ≤ i ≤ n− k : zi+k

i−k = uk
−k, xi = x}|.

In the following exercise we express the error achieved by the “genie” aided
algorithm using the count vector q.

Exercise 10.7.2. :

(a) Show that

Dk(x
n, zn) =

1

n

∑
uk
−k

U(q(xn, zn, uk
−k))

(b) Write L
̂Xn(x

n−k
k+1 , z

n) = 1
n

∑n−k
i=k+1 Λ(xi, X̂i(z

n)). For any w : Zn ×
Z2k+1 → R

|X |, let X̂n satisfy

X̂i(z
n) = X̂Bayes(w(z

n, zi+k
i−k)) k + 1 ≤ i ≤ n− k.

Then, ∀xn, zn, show that

0 ≤ L
̂Xn(x

n−k
k+1 , z

n)−Dk(x
n, zn) ≤ Λmax

n

∑
uk
−k

||q(xn, zn, uk
−k)− w(zn, uk

−k)||1.
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The second part of Exercise 12.4.2 bounds the suboptimality of a Bayes estima-
tor that uses weights w using the �1-norm between q and w. Recall that,

X̂DUDE(z
n)[i] = X̂Bayes

((
Π−Tm(zn, zi−1

i−k, z
i+k
i+1 )

)
Πzi

)
From part (b) of Exercise 12.4.2 , it then follows that ∀xn, ε > 0,

P
(
|L

̂Xn
DUDE

(xn, Zn)−Dk(x
n, Zn)| > ε

)
≤ P

⎛⎝Λmax

n

∑
uk
−k

||q(xn, Zn, uk
−k −Π−Tm(Zn, u−1

−k, u
k
1)
Πu0 ||1 > ε

⎞⎠(10.8)
To estimate the �1 norm of the difference between the count vectors, we

write

q(xn, Zn, uk
−k)[x] =

n−k∑
i=k+1

1{Zi+k
i−k=uk

−k,xi=x}

and

Π−Tm(Zn, u−1
−k, u

k
1)
Πu0

[x] = Π−Tm(Zn, u−1
−k, u

k
1)[x]Π(x, u0)

= Π(x, u0)
∑
ũ0

Π−T (x, ũ0)m(Zn, u−1
−k, u

k
1)[ũ0]

= Π(x, u0)
∑
ũ0

Π−T (x, ũ0)
n−k∑

i=k+1

1{Zi+k
i−k=(u−1

−k,ũ0,uk
1 )}

In the following exercise, we establish that the random variable
(
q(xn, Zn, uk

−k)[x]−Π−Tm(Zn, u−1
−k, u

k
1)[x]Π(x, u0)

)
is a sum of the form

∑n−k
i=k+1 fi(Z

i+k
i−k ) where the fi have zero mean.

Exercise 10.7.3. Prove that ∀xn, uk
−k, and k + 1 ≤ i ≤ n− k,

E(1{Zi+k
i−k=uk

−k,xi=x}) = E

(
Π(x, u0)

∑
ũ0

Π−T (x, ũ0)1{Zi+k
i−k=(u−1

−k,ũ0,uk
1 )}

)

We further note that {fi} are not only of zero mean by are also bounded and
that fi and fj are independent when |i − j| > 2k. The following exercise is a
consequence of these properties of {fi} combined with Hoeffding’s inequality.

Exercise 10.7.4. Show that,

P
(
1

n

∣∣q(xn, Zn, uk
−k)[x]−Π−Tm(Zn, u−1

−k, u
k
1)[x]Π(x, u0)

∣∣ ≥ ε

)
= P

(
1

n

∣∣ n−k∑
i=k+1

fi(Z
i+k
i−k )

∣∣ ≥ ε

)

≤ 2(2k + 1) exp

(
− (n− 2k)ε2

2(2k + 1)(1 + |X | ||Π−1||∞)2

)
Hint : Use the mean and depended structure of {fi} noted above, combined

with
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Theorem 10.7.5. (Hoeffding inequality) Let V1, V2, . . . Vn be independent ran-
dom variables with EVi = 0 and |Vi| ≤ c for all i. Then,

P
(
1

n
|

n∑
i=1

Vi| ≥ ε

)
≤ 2 exp

(
−nε2

2c2

)

cf. [4] for a simple proof of Hoeffding’s inequality.

10.8 The DUDE’s Perfomance

10.8.1 Proof of DUDE’s Optimality in Semi-Stochastic
Setting: Continued

Consider denoisers of the form

X̂n : X̂i (z
n) = X̂Bayes

(
w
(
zn, zi+k

i−k

))
, k + 1 ≤ i ≤ n− k, (10.9)

where w(·, ·) takes values in R
|X |. Note that DUDE is of this form with w =

wDUDE explicitly given by

wDUDE(z
n, zi+k

i−k) =
(
Π−Tm

(
zn, zi−1

i−k, z
i+k
i+1

))
 πzi . (10.10)

Furthermore, recall that the difference in the average per-symbol loss of the
genie-aided denoiser and a legitimate denoiser with some w is upper-bounded
by where Λmax � maxx,x̂ Λ(x, x̂) and q(xn, zn, uk

−k) is the genie-aided statistic
defined by

q(xn, zn, uk
−k)[x] = |{k+1 ≤ i ≤ n−k : zi+k

i−k = uk
−k, xi = x}|, x ∈ X (10.11)

Now, consider the performance of DUDE in our semi-stochastic setting with a
deterministic xn and a random output Zn. Note that hereafter we will use a
specific k for DUDE, which is given by

k = kn = �1
5

log n

log |Z|�, (10.12)
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and we will use X̂n
DUDE and X̂n,kn

DUDE interchangably. Then, we have the following
upper bounds.

Pr
{
|LX̂n

DUDE

(
xn−k
k+1 , Z

n
)−Dk (x

n, Zn) | ≥ ε
}

(a)

≤ Pr

⎧⎨⎩Λmax

n

∑
uk
−k

∑
x∈X

∣∣q(xn, Zn, uk
−k)[x]− wDUDE(Z

n, uk
−k)[x]

∣∣ ≥ ε

⎫⎬⎭ ,

(b)

≤ Pr

⎧⎨⎩ ⋃
uk
−k,x

{
1

n

∣∣q(xn, Zn, uk
−k)[x]− wDUDE(Z

n, uk
−k)[x]

∣∣ ≥ ε

|X |2k+2Λmax

}⎫⎬⎭ ,

(c)

≤
∑
uk
−k

∑
x∈X

Pr

{
1

n

∣∣q(xn, Zn, uk
−k)[x]− wDUDE(Z

n, uk
−k)[x]

∣∣ ≥ ε

|X |2k+2Λmax

}
︸ ︷︷ ︸

:=J(x,uk
−k)

.

(10.13)

The inequality (a) holds from (??), and the inequality (b) is obtained by applying
the following union-type bound

Pr

(
m∑
i=1

vi ≥ ε

)
≤ Pr

(
m⋃
i=1

{
vi ≥ ε

m

})
, (10.14)

and the inequality (c) is a direct result of the union bound. Define a function
B(n, k, ε) as

B(n, k, ε) � 2(2k + 1) exp

(
−n− 2k

2k + 1
· ε2

2(1 + |X |‖Π−1‖∞)2

)
. (10.15)

Then, from the exercise in the previous lecture, each J
(
x, uk

−k

)
, x ∈ X and

uk
−k ∈ X 2k+1, is upper-bounded by

J
(
x, uk

−k

) ≤ B

(
n, k,

ε

|X |2k+2Λmax

)
. (10.16)

Since B
(
n, k, ε

|X |2k+2Λmax

)
in (10.16) does not depend on a particular choice of

uk
−k and x, combining (10.13) and (10.16), we have

Pr
{
|LX̂n

DUDE

(
xn−k
k+1 , Z

n
)−Dk (x

n, Zn) | ≥ ε
}
≤ |X |2k+2B

(
n, k,

ε

|X |2k+2Λmax

)
.

(10.17)
Suppose that k is fixed, or grows to infinity, but sufficiently slowly with n. Then,
the RHS of (10.17) can be made to vanish quite quickly as n tends to infinity.
To exploit that fact properly, we need the following lemma.
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Lemma 10.8.1. (Borel-Cantelli Lemma [1]): Let {En} be a sequence of events
satisfying

∞∑
n=1

Pr(En) <∞, (infinitely summable) (10.18)

and define lim supn→∞ of En as

lim sup
n→∞

En �
∞⋂

n=1

( ∞⋃
m=n

Em

)
. (10.19)

Note that lim supn→∞En can be interpreted as the event that infinitely many of
the events {En} occur. Then,

Pr(lim sup
n→∞

En) = 0. (10.20)

Proof By the definition, (10.19), for every m,

P (lim sup
n→∞

En) ≤ P (
∞⋃

m=n

En) ≤
∞∑

m=n

P (En). (10.21)

Since the LHS of (10.21) is independent of m, it is bounded by the limit of the
RHS as m→∞, which is 0 by (10.18).

Exercise 10.8.2. Let C(n, k, ε) denote the RHS of (10.17). Then, verify that

∞∑
n=1

C(n, k, ε) <∞, for any ε > 0, (10.22)

when k = kn as in (10.12).

Let now En be the event

|LX̂n
DUDE

(
xn−k
k+1 , Z

n
)−Dk (x

n, Zn) | ≥ ε. (10.23)

Then, combining the result of Exercise 10.8.2 and (10.17), we have

∞∑
n=1

Pr(En) ≤
∞∑

n=1

C(n, k, ε) <∞. (10.24)

Using Borel-Cantelli Lemma, we have

Pr
(
lim
n→∞ sup |LX̂n

DUDE

(
xn−k
k+1 , Z

n
)−Dk (x

n, Zn) | ≥ ε
)
= 0 w.p.1 (10.25)

implying

lim
n→∞LX̂n

DUDE

(
xn−k
k+1 , Z

n
)−Dk (x

n, Zn) = 0 w.p.1, (10.26)

by the arbitrariness of ε > 0. This completes the optimality proof of DUDE in
the semi-stochastic setting.
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10.9 Lower Limits of Discrete Universal Denois-
ing

If we look at the DUDE algorithm from previous lectures, the loss incurred by
DUDE is not much worse than that of the best kth order sliding window denoiser.
Compared to the benchmark (the best kth order sliding window denoiser), is
there another denoiser whose excess loss is much smaller than that incurred by
the DUDE? To answer this question, we will derive a lower bound on the excess
loss of any denoiser compared to the same benchmark.

10.9.1 Background and Notation

The alphabet of the noiseless signal, as well as the noisy observation and the
reconstruction is a M -letter alphabet, denoted by A. Denote

∏
(i, j) the prob-

ability of the output symbol j when the input symbol is i. We assume a given
loss function Λ : A2 → [0,∞), where Λ(i, j) defines the loss incurred by es-
timating the symbol i with the symbol j. An n-block denoiser is a mapping
X̂n : An → An. Let LX̂n(xn, zn) denote the normalized cumulative loss when
the underlying noiseless sequence is xn and the observed sequence is zn ∈ A,
i.e.,

LX̂n(x
n, zn) =

1

n

n∑
i=1

Λ
(
xi, X̂

n(zn)[i]
)

(10.27)

A k-th order sliding window denoiser X̂n is a denoiser that is defined by a
mapping

f : A2k+1 → A
so that for all zn ∈ An

X̂n(zn)[i] = f
(
zi+k
i−k

)
, i = k + 1, ..., n− k.

Let Sk be the collection of all kth order sliding window denoiser.
Question: Is kth order DUDE in Sk?

The answer is No. Fix a zn sequence, DUDE acts like a kth order sliding window
denoiser for that sequence. But in general, for different zn sequences, DUDE
applies different sliding window denoiser.

The kth order minimum loss of (xn,zn) is defined as

Dk(x
n, zn) = min

X̂n∈Sk

LX̂n(x
n−k
k+1 , z

n)

= min
f :A2k+1→A

1

n− 2k

n−k∑
i=k+1

Λ(xi, f(z
i+k
i−k)). (10.28)

The expected kth order minimum loss is defined as

D̂k(x
n) � E[Dk(x

n, Zn)] (10.29)
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This quantity is the benchmark against which we will compare the loss incurred
by other denoisers. Finally, the kth order regret R̂k(X̂

n) of any n-block denoiser
is defined as follows:

R̂k(X̂
n) = max

xn∈An

(
E[LX̂n(x

n−k
k+1 , Z

n)]− D̂k(x
n)
)

(10.30)

Specifically, we know that the kth order regret of DUDE is upper-bounded by

R̂k(X̂
n,k
DUDE) ≤ C

√
kM2k

n

The question we are going to answer in this lecture is whether there exists
any denoiser which gives significantly better regret. We will show that for (all
sufficiently large n), and any X̂n

R̂k(X̂
n) ≥ C

αk

√
n
.

No denoiser can make regret approaching zero faster than O( 1√
n
)

10.9.2 Main Result

Let Xn be a sequence of i.i.d. random variables with P denoting the distribution
of Xi. The quantity E[LX̂n(Xn, Zn)] − D̂k(X

n) is then a random variable. A
key observation is that we can use the expectation of this random variable to
lower bound the regret, i.e.,

R̂k(X̂
n) ≥ E

[
E[LX̂n(X

n, Zn)]− D̂k(X
n)
]
= E

[
LX̂n(X

n, Zn)
]− E

[
D̂k(X

n)
]

The first term on the RHS of above equation can be lower bounded as

E[LX̂n(x
n, Zn)] ≥ min

X̂n

E[LX̂n(X
n, Zn)]

The minimizer is the Bayes response, i.e.,

X̂n
opt(z

n)[i] = argmin
x̂

λT
x̂PXi|zi

= argmin
x̂n

λT
x̂

(P
 πzi)

PTπzi

Then the optimal loss becomes

Dopt(P) = min
x̂

λT
x̂PXi|zi

Using Dopt , the kth order regret is lower bounded by

R̂k(X̂
n) ≥ Dopt(P)− E[D̂k(X

n)] (10.31)
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10.9.3 BSC example

Xi ∼ P =

[
1− P

P

]
δ <

1

2

when zi = 1, X̂opt(z
n)(i) =

⎧⎪⎨⎪⎩
0 P < δ

1 P > δ

either P = δ

when zi = 0, X̂opt(z
n)(i) =

⎧⎪⎨⎪⎩
0 P < 1− δ

1 P > 1− δ

either P = 1− δ

We can get X̂opt and Dopt(P)by combining two cases

X̂opt =

⎧⎪⎨⎪⎩
”always say 0” P ≤ δ

”say what you see” δ ≤ P ≤ 1− δ

”always say 1” P ≥ 1− δ

Dopt(P) =

⎧⎪⎨⎪⎩
P P ≤ δ

δ δ ≤ P ≤ 1− δ

1− P P ≥ 1− δ

Observe that when P = δ, the crossover probability, there are two Bayes optimal
denoisers, namely, the “always say o” and the “say-what-you-see” denoiser. We
will try to lower bound the regret for P = δ.

when P =

[
1− δ

δ

]
, R̂k(X̂

n) ≥ δ − E[ min
X̂∈S0

LX̂(Xn, Zn)]

The second term of the RHS of the above equation can be handled as follows:

E

[
min
X̂∈S0

LX̂(Xn, Zn)

]
≤ E [min{Lalways0(X

n, Zn), Lswys(X
n, Zn)}]

= E

[
min{ 1

n

n∑
i=1

1{Xi = 1}, 1
n

n∑
i=1

1{Xi 
= Zi}}
]

= δ +
1√
n
E

[
min{ 1√

n

n∑
i=1

(1{Xi = 1} − δ),
1√
n

n∑
i=1

(1{Xi 
= Zi} − δ)}
]

Note that 1√
n

∑n
i=1(1{Xi = 1} − δ) and 1√

n

∑n
i=1(1{Xi 
= Zi} − δ) are sums

of independent random variables. Further each set of random variables are
independent of each other. Therefore, by the Central Limit Theorem, they
coverge in distribution to independent zero mean Gaussian random variables
(N(0, δ(1− δ))).
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Therefore,

E[ min
X̂∈S0

LX̂(Xn, Zn)] ≈ δ − C√
n
, C > 0.

Now we have

R̂k(X̂
n) ≥ δ − E[ min

X̂∈S0

LX̂(Xn, Zn)]

≥ δ − (δ − C√
n
)

=
C√
n

(10.32)

10.9.4 Proof of Lower bound

Definition: (π, λ) is neutralizable if ∃ channel output symbol t ∈ A, s.t. for
some P ∈M ( M : simplex M-dimensional)

(a) λT
i (P
 πt) = λT

j (P
 πt) = minx̂ λ
T
x̂ (P
 πt)

(b) (λi − λj)
 P 
 πt 
= 0

Further the distribution P that satisfies the two equations is termed loss-neutral.

Theorem 10.9.1. : For any neutralizable (π,λ), and any sequence of denoisers
{X̂n}

R̂k(X̂
n) ≥ C√

n

(∑
a

√
(P ∗)Tπa

)2k
(1 + o(1))

where P ∗ is any loss-neutral distribution and C is a positive function of (π, λ)
and P ∗.

Proof: Let

q(zn, xn, ck−k)[α] =
|{i : zi+k

i−k = ck−k, xi = α}|
n− 2k

, where α ∈ A.

Suppose Xn is iid with Xi ∼ P

E[q(zn, xn, ck−k)] = (P
 πc0)Π
k
i=−k
i �=0

P
Tπci

Dk(x
n, zn) = min

f :A2k+1→A
1

n− 2k

n−k∑
i=k+1

Λ(xi, f(z
i+k
i−k))

=
∑

ck−k∈A2k+1

min
x̂∈A

∑
j

Λ(j, x̂)q(zn, xn, ck−k)[j]

=
∑
ck−k

min
x̂∈A

λT
x̂ q(z

n, xn, ck−k)

Definition: X1, . . . , Xn is m-dependent if for all s > r + m, X1, . . . , Xr and
Xs, . . . , Xn are independent
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Theorem 10.9.2. For a stationary m-dependent sequence Xn s.t. E[Xi] = 0
and E[|Xi|3] <∞,

1√
n

n∑
i=1

Xi → N(0, V ), as n→∞,

where V = E[X2
1 ] + 2

∑m+1
k=2 E[X1, Xk]

This theorem is proved by Hoeffding and Robbins [5]. The following lemma
is a consequence of the theorem. The proof of the lemma can be found in [6].

Lemma 10.9.3. Xn is iid and Xi ∼ P. Then, for any α ∈ R
n and any

ck−k ∈ A2k+1 s.t. αT (P
 πc0) = 0,

lim
n→∞EP

[√
n
∣∣αT q(zn, xn, ck−k)

∣∣ ] =√
αV

π

where V = (α
 α)T (P
 πc0)
∏k

i=−k,i �=0 P
Tπci .

Let us complete the proof of Theorem 1.
Recall Eq. 10.31,

R̂k(X̂
n) ≥ Dopt(P)− E[D̂k(X

n)]

If Xi ∼ P
∗ → loss-neutral w.r.t. (πt, λi, λj),

R̂k(X̂
n) ≥

∑
c0∈A

min
x̂∈A

λT
x̂ (P

∗ 
 πc0)− E[D̂k(X
n)] (10.33)

Let us find an upper bound for the second term of R.H.S. of the above equation.

E[D̂k(X
n)] = E[Dk(X

n, Zn)]

= E
[∑
ck−k

min
x̂∈A

λT
x̂ q(Z

n, Xn, ck−k)
]

=
∑

ck−k,c0 �=t

E[min
x̂∈A

λT
x̂ q(Z

n, Xn, ck−k)] +
∑

ck−k,c0=t

E[min
x̂∈A

λT
x̂ q(Z

n, Xn, ck−k)](10.34)

The first term on the R.H.S. of Eq. 10.34 can be upper bounded as follows:∑
ck−k,c0 �=t

E[min
x̂∈A

λT
x̂ q(Z

n, Xn, ck−k)] ≤
∑

ck−k,c0 �=t

min
x̂∈A

E[λT
x̂ q(Z

n, Xn, ck−k)]

=
∑

ck−k,c0 �=t

min
x̂∈A

λT
x̂ (P
 πc0)

k∏
i=−k,i �=0

P
Tπci

=
∑
c0 �=t

min
x̂

λT
x̂ (P
 πc0) (10.35)
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The second term on the R.H.S. of Eq. 10.34 can be upper bounded in the
following way:∑

ck−k,c0=t

E

[
min
x̂∈A

λT
x̂ q(Z

n, Xn, ck−k)

]
≤

∑
ck−k,c0=t

E
[
min{λT

i q(Z
n, Xn, ck−k), λ

T
j q(Z

n, Xn, ck−k)}
]

(a)
=

1

2

∑
ck−k,c0=t

(
E[λT

i q(Z
n, Xn, ck−k)] + E[λT

j q(Z
n, Xn, ck−k)]− E

[∣∣(λi − λj)
T q(Zn, Xn, ck−k)

∣∣ ] )
(b)
= min

x̂∈A
λT
x̂ (P
 πt)− 1

2

∑
ck−k,c0=t

E[|(λi − λj)
T q(Zn, Xn, ck−k)|]

(c)
= min

x̂∈A
λT
x̂ (P
 πt)−

∑
ck−k,c0=t

C(1 + o(1))√
n

√
2Vck−k

π
(10.36)

where Vck−k
= ((λi − λj) 
 (λi − λj))T (P 
 πc0)

∏k
i=−k,i �=0 P

Tπci , (a) follows

because min{x, y} = x+y−|x−y|
2 , (b) follows from the defintion of neutralizable

and loss-neutrality, and (c) is due to Lemma 3.
Finally, substituting Eq. 10.35 and Eq. 10.36 into Eq. 10.34 and then using

the obtained upper bound of E[D̂k(X
n)] in Eq. 10.33, we have

R̂k(X̂
n) ≥ Dopt(P)− E[D̂k(X

n)]

=
∑
ck−k

min
x̂

λT
x̂ (P
 πt)−

∑
ck−k

min
x̂

λT
x̂ (P
 πt) +

C(1 + o(1))√
n

∑
ck−k,c0=t

√
2Vck−k

π

=
∑

ck−k,c0=t

C(1 + o(1))√
n

√
2Vck−k

π
. (10.37)

Observe that

∑
ck−k∈A2k+1,c0=t

√
2Vck−k

π
=

√
2

π

√
((λi − λj)
 (λi − λj))

T
(P∗ 
 πt)

∑
a2k
1 ∈A2k

(
2k∏
i=1

(P∗)T πai

) 1
2

.

Note that since P
∗ is a loss-neutral distribution (λi − λj) 
 P

∗ 
 πt 
= 0, and
therefore

((λi − λj)
 (λi − λj))
T
(P
 πt) > 0.

Also observe that

∑
a2k
1 ∈A2k

(
2k∏
i=1

(P∗)Tπai

) 1
2

=

(∑
a∈A

√
(P∗)Tπa

)2k

.

For more details and discussions see [6].
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10.10 Some concluding remarks on DUDE

We have studied DUDE in the setup of the universal discrete denoising with
a known channel: how it works and what is the performance it can achieve.
It is shown that, with the jointly stationary process (X,Z), DUDE can do
remarkably well compared to the optimal denoiser, which can access both to
the noisy output sequence and the underlying clean source sequence. Indeed,
in the limit of n tends to infinity, DUDE with the context length kn, X̂

n,kn

DUDE,
can achieve the same performance as the optimal denoiser of the same context
length in terms of the average per-symbol loss. We conclude this section with
some discussion on the context length and the non-asymptotic performance of
DUDE.

10.10.1 Context Length of DUDE

So far we have considered the explicit context length of kn = � 15 logn
log |Z|� to be

concrete with our analysis. However this is not necessarily the best kn that we
can choose, and indeed we can do better choices based on more refined analysis.
Here are some theoretical and practical guidelines for choosing kn.

Remark

a) The relation kn|Z|2kn = o(n log n) can be shown to be sufficient for the
validity of the Theorem 2, by using a better exponential-type bound [2, 3],
which decreases more rapidly w.r.t kn. So, e.g., kn = c logn

log |Z| , c < 1
2 ,

suffices to guarantee that DUDE competes with the genie of order kn.
Note that this is true despite the fact that kn|Z|2kn does not suffice to
guarantee the convergence of the union bound in (10.17).

b) In practice, kn can be determined in various ways.

- Data-dependent selection
We can rely on a compressibility heuristic to try a number of different
context lengths and select the kn resulting in the most compressible
reconstruction, or dynamic context of the data can be taken into
account, meaning that kn may vary depending on the location of a
symbol that we want to denoise.

- Other possible tweaks
We can perform context aggregation or iterated DUDE to improve the
denoising performance. In particular, in case of the iterated DUDE,
the equivalent channel becomes no longer memoryless as the number
of iteration increases, and we cannot use the same technique used in
DMC to analyze the performance of DUDE. However, some empirical
results show that the denoising performance can be improved up to
a certain number of iterations.
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10.10.2 Non-Asymptotic Performance

In practice the sequence length n is fixed and finite, thus the asymptotic per-
formance of DUDE with n tending to infinity may not be a useful performance
indicator. Therefore, we present the non-asymptotic upper bound and lower
bound on the average per-symbol loss of DUDE as

• Non-asymptotic upper bound

E
[
Ln
X̂DUDE

(xn, Zn)−Dk (x
n, Zn)

]
≤ Cu ·

√
k|Z|2k

n
, ∀xn and k

(10.38)

• Non-asymptotic lower bound

max
xn

E
[
Ln
X̂DUDE

(xn, Zn)−Dk (x
n, Zn)

]
≥ Cl · ck√

n
, c > 1, ∀k

(10.39)

where Cu and Cl are some constants, which only depend on Π and Λ. See [6]
for the details.
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