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Chapter 1

Ergodic Processes

1.1 Ergodic Processes

Note: In this class, as in many scientific communities, we define ergodicity of a
process in the context of a stationary process.

Definition 1.1.1. A finite-alphabet stationary process X is ergodic if for all k
and every f : X2kTL 5 R, with E|f(XF)| < oo,

R ;
nh_}rr;OEZf(Xif:)%Ef(Xﬁk) w.p.1 (1.1)
i=1

Intuitivly, ergodic processes are “reliable” in that one process realization
(L.H.S. of above equation) reveals all process statistics (R.H.S. of above equa-
tion).

Exercise 1.1.2. Ergodic Examples [1, 4, 9]
(a) Show X; i.i.d. = X is ergodic

...000000000... w.p.

L1110 .. wap. }“ not ergodic

N N~

(b) Show that X = {

...010101010... w.p.
... 101010101... w.p.

N N~

(c) Show that X = { } is ergodic.

Theorem 1.1.3 (The “Ergodic Decomposition” Theorem). FEvery stationary
process is a mixture of ergodic processes. That is, VP stationary, 3 a family
of ergodic processes {Pgloco and a probability measure () on © such that
P= f@ Podu(6).

Conversely, if P is not ergodic, then it can be expressed as a non-trivial
mixture of different stationary processes.

3
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For X, let X(*) denote the k-th order super source (i.e., Xl(k) = X{“, XQ(k) =
X)-

Definition 1.1.4. X is “totally ergodic” if X*) is ergodic Yk

Example 1.1.5. Consider the source

...01010101... w.p.}
X =9 ..10101010... wpl (- (12)

} . (1.3)

It is clear that X2 is not ergodic as it is equivalent to the single-letter process

} (1.4)

Exercise 1.1.6. Let X be a “B-process” defined as X; = f(Ylekk) for i.i.d.
process Y. Show that X is totally ergodic.

Then, we have

[ - ODODODOD . w
B .(10)(10)(10)(10) ... w.p.

N N[=

...000000000... w.p.
) L1l1111111... w.p.

N— N

which is not ergodic. Thus, X s not totally ergodic.

1.2 Ergodicity: General Setup

We consider a more general setup for ergodicity on the probability space (9, F, Pr).
A mapping ¢ : Q — Q is measure-preserving if Pr(p=1(A)) = Pr(A) for all
A € F. A random variable X = X(w) is a measurable mapping from € to
R. An event A € F is said to be invariant if Pr(¢~1(A)AA) = 0, where the
notation AAB = (A\ B)U(B\ A) is the symmetric difference of sets A and B.

Exercise 1.2.1. Show that the class of invariant events I is a o-field.

Definition 1.2.2. The mapping ¢ is “ergodic” if T is trivial, that is, Pr(A) €
{0,1} for all A€ T.

Theorem 1.2.3 (The ergodic theorem/Birkhoff’s ergodic theorem/Pointwise
ergodic theorem[2]). For any X € L4,

n—1
Z X(p"w) =5 E[X|Z] a.s. and in L. (1.5)
m=0

S

Since E[X|F] = E[X] a.s. for all X € Ly if and only if F is trivial, by the
ergodic theorem and Definition 1.2.2, the following statements are equivalent.
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(a) For any X € Ly, (1/n) ZZ;IOX(gomw) " E[X] w.p.1 and in L.
(b) T is trivial.
(c) ¢ is ergodic.

To define ergodicity for random processes, we consider the probability space,
where ) = X'*° the probability measure Pr is the distribution of the random
process, and ¢ : Q@ — Q is defined as a shift in time, namely p(w); = wiy1.
Stationarity of the process is equivalent here to ¢ is measure preserving. Then,
the above equivalence implies that ergodicity of a stationary process, as per
Definition 1.1.1, is essentially equivalent to ergodicity, in the sense of Definition
1.2.2, of the time shift transformation.

Exercise 1.2.4. For the examples given in Ezercise 1.1.2, verify ergodicity or
lack thereof using Definition 1.2.2.

Definition 1.2.2 brings some insight into the ergodic decomposition theorem
which states that a process X is ergodic if and only if it cannot be represented
as a mixture of different stationary processes. By definition, if X is not ergodic
then Z defined by ¢ is not trivial. It follows that there exists an event A such
that Pr(A4) > 0, Pr(A°) > 0, ¢(A) = A, and p(A°) = A°. Essentially, we can
divide the sample space €2 into A and A€, and interpret the random process X
as a mixture of two processes in each subset with probability Pr(A4) and Pr(A°).
For details we refer to Chapter 6 of [2].

Although there are multiple ways to formally define decaying memory, when
a process is “mixing” or has decaying memory, even the weakest definition
of a “mixing” process implies ergodicity. The converse is far from true, as
demonstrated by part (c) of Exercise 1.1.2.
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Chapter 2

Rate Distortion

2.1 Allowable Schemes

Let X be a stationary ergodic process with a finite alphabet. In lossy com-
pression (also known as lossy source coding), our goal is to encode a source
sequence of block length n, X, using only nR bits, in order to minimize a given
distortion metric between the original source sequence and the reconstruction
sequence, Y™, chosen by the decoder. We assume that our given distortion
function d : (X,Y) — R, operates bitwise and that the distortion D of a given
reconstruction sequence Y™ is given by D = E(d(X",Y™)) =EL1 """ | d(X;,V)).

Definition 2.1.1. A fized-rate rate-distortion scheme at rate R for block length
n consists of:

(a) An encoder, f, : X™ — {1,...,2"%}
(b) A decoder, g, : {1,...,2"E} — yn

(c) A reconstruction sequence, Y™ = g, (fn(X™))

Figure 2.1: A variable-rate lossy compression scheme

Now we consider a more general class of allowable rate-distortion schemes
analogous to the lossless compression setting. Consider the variable-rate lossy
compression scheme shown in Figure 2.3. The encoder maps the n-block source
X" with X; € X into bit stream C,,(X™), which may have different lengths for
different source sequences, that is, Cy, : X™ — {0, 1}*. The decoder is a mapping
D,, : {0,1}* — Y™ and it reconstructs the n-block sequence Y™ = D,,(C,(X™)),
where Y; € Y. A distortion matrix d(-,-) : X x Y — [0,00) is given. Since the
encoder can also reconstruct the sequence Y™, the above rate-distortion scheme
is equivalent to the scheme where the encoder first maps the source sequence
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8 CHAPTER 2. RATE DISTORTION

into a reconstruction sequence and then describes the reconstruction sequence
losslessly. In the following we formally define the equivalent scheme.

Definition 2.1.2. A “variable-rate” code for n-blocks is a triple (B, ¢n,Chr),
where

e B, CY" is a codebook consisting of all possible reconstruction sequences,
o ¢ : X" = B, and

e C),: B, —{0,1}* is a U.D. code on B,, which describes the reconstruction
sequences losslessly.

1o (X™), which is the length of Cp,(Y™) = Cp (¢ (X™)). The (expected) distortion
is D = Eld(X™Y")] = E[(1/n) Y1, d(X;,Y;)], and the (expected) rate is
R=E[(1/n)l,(X")].

The reconstruction sequence is Y™ = ¢, (X™). The number of bits expended is

Note that fixed-rate schemes are special cases of variable-rate schemes with
Cyp : B, — {0,1}". Now we define achievability and the rate-distortion func-
tion.

2.2 The Rate-Distortion Function

Definition 2.2.1. The pair (R,D) is called achievable if Ve > 0, In and a
rate-distortion scheme at rate < R+ ¢ and (expected) distortion < D + €.

Definition 2.2.2. The rate-distortion function is defined as R(X, D) = R(D) =
inf{R’ : (R, D) is achievable}. Similarly, we define the “distortion-rate” func-
tion as D(R) = inf{D’ : (R, D') is achievable}
Exercise 2.2.3. Show that for X stationary:

(a)

1
R(D) = 1li i —H(Y™" 2.1
B I T .

(b)

R(D) = inf{H(Y) : E(d(X0,Y))) < D, (X,Y) jointly stationary} (2.2)

Although the definition of the rate-distortion function above is in terms
of a convex optimization problem which is in theory solvable, a much more
useful expression for rate-distortion involves the mutual information between
the source and output distributions, not only the output distribution’s entropy.
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Definition 2.2.4. The informational rate-distortion function R (D) is defined
as

RO(D) = lim R (D) (2.3)
k—oo
where

1
RY(D) = i 21Xk YR, 2.4
i (D) R LI (X% Y") (2.4)

Exercise 2.2.5. Fquivalence of rate-distortion and informational rate-distortion
functions

(a) Show that the limit

RD(D) = lim R (D) (2.5)

k—o0
exists and is equal to infy>, R,(J)(D), VX stationary

(b) For (X,Y) jointly stationary, define the mutual information rate as

I(X,Y) 2 lim S7(x™,v™). (2.6)

n—o00 M

Show that this limit exists and that
RU(D) = inf{I(X,Y) : E(d(Xo,Yy)) < D, (X,Y) jointly stationary}
(2.7)

2.3 Rate-Distortion Theory

The main theorem of rate distortion theory for random processes can be state
as:

Theorem 2.3.1. The operational rate distortion function for a stationary er-
godic process X with bounded distortion function d(x, %) is equal to the associated
information rate distortion function. Thus

R(D) = RY(D) (2.8)

is the minimum achievable rate at distortion D.

Proof  Converse: We need to show that R(D) > RU)(D). For any scheme
with Ed(X™,Y™) < D, let the expected number of bits that this variable length
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scheme achieves be nR. Then, since we need to losslessly describe Y™,

nR(D) > H(Y™) (2.9)
> I(X™Y™) (2.10)
>  min  I(X™Y™M) (2.11)
Ed(X™,Y™)<D
2 nRU) (D) (2.12)
. (I)

> .
= n fof Ry (D) (2.13)
2 nRUO(D). (2.14)
O

Exercise 2.3.2. Achievability: We need to show that R(D) < RY)(D). This
1s left as an exercise, but the outline of the proof is given here in three steps.

(a) Prove R(D) < Rgl)(D). We can use the ideas from rate distortion theory
for a memoryless source. If we generate the codebook according to Q(Y)
which achieves the minimum in the information rate distortion function,
then, with high probability, there is a codeword which is jointly typical with
™ for all typical ™. The crucial idea is that if X™ is memoryless then it
will be a typical sequence with high probability. Now for an ergodic random
process X, show that ergodicity implies that X™ is typical with respect to
the first order marginal distribution with high probability.

(b) Assuming X is totally ergodic, prove R(D) < RU)(D).
Hint: Since R,(CI)(D) for X is Rgl)(D) for XF) (a) implies (D).
(c) For an ergodic random process X, prove R(D) < RU (D).
Hint: FEither prove or look up the following lemma.
Lemma 2.3.3. If X is ergodic then X*) can be represented as a mizture

of k equiprobable ergodic processes.

Using this lemma and concavity of the mutual information prove the de-

sired claim. Note that for a set of probability distributions {Prg?,)c ta €
{1,...,k}}, the following is always true.

k k

1
S I(Pr{) s Prye ) g[(%E Pri®); Pry« xx). (2.15)
a=1

a=1

El e

2.4 Restating Rate-distortion

R(D) =inf{R' : (R, D) is achievable } , (2.16)
D(R) =inf{D’ : (R, D’) is achievable } . (2.17)



2.4. RESTATING RATE-DISTORTION 11

The rate distortion function R(D) is related to the question: if we are not
allowing more than distortion D, what is the minimum rate we can get? For
the distortion rate function D(R), the related question is: If we want rate no
more than R, what is the minimum distortion we can get? Naturally overall
cost function we want to minimize is the linear combination of the rate and the
distortion.

1
min E[fln(X") n ad(X",Y"))} , (2.18)
all schemes n
for some o > 0, and minimization is over all schemes in the world, lossy or
lossless.

Exercise 2.4.1. Show that for any stationary source

min  E lzn(Xn)+ad(X",Yn))] "“F win{R(D) +aD}  (219)

all schemes n
Hint : First prove that

E[(%)ln(X”) +adX"Y")] = REI(X",Y™)) + oEd(X™,Y™)  (2.20)

for all n. Then prove the upper bound.

If R(D) is smooth, then the minimum is achieved at R'(D) 4+ « = 0, which
is called the optimal “fixed-slope” performance. The reason is that the optimal
solution achieves the rate distortion performance whose slope is —«. In the case
when the rate distortion function R(D) is not smooth, there may exist multiple
rate distortion pairs (R, D) such that the minimum is achieved.

)

slope=—a

Figure 2.2: Non-smooth R(D)

Recall that the operational rate distortion function is defined as

1
R,(D) = i -H({Y™"), 2.21
(D) s < p 7 (Y™) (2.21)
R(D) = lim R,(D), (2.22)
n—oo
and the informational rate distortion function is
1
R(D) 2 i —I(xkyH 2.23
k ( ) IEd(XI’;Ig/I}‘) Dk‘ ( 9 )a ( )

<
RO(D) 2 1im R"(D). (2.24)

k—o0
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Theorem 2.4.2. Rate distortion theorem: R(D) = RY)(D).

What might be confusing is that R, (D) is what you can achieve with block
of length n, while R,(J) is not something you can achieve with blocklength k. In

the proof of Theorem 2.4.2, to achieve R,(CI), we take kth order super symbols
and work with a long block code of super symbols. The target rate distortion
pair (R, D) is then achieved in the limit. Hence,

a) R, (D) is achievable with blocklength n. R is in general not achievable
k
with blocklength k.

(b) For all k, both Ri(D) and R,(f) upper bound R(D).

The above theorem states that to compute the operational rate distortion
function, we can use the informational rate distortion function. A valid question
to ask here is: why is informational rate distortion function any simpler or
useful than the original operational rate distortion function? On the face of
it, the informational rate distortion function also involves infinite dimensional
optimization problem involving X* for k¥ — oco. One good answer we have
already given in 376A is that for memoryless sources, informational RD collapses
into a simple optimization problem:

Exercise 2.4.3. Show that for a memoryless source, for all k R](CI)(D) = Rgl),
and conlcude that R(D) = RgI)(D).

The informational representation yields explicit characterizations of the rate
distortion function way beyond memoryless sources, as we can see in the next
section.

2.5 Shannon Lower Bound

For simplicity assume that X =Y = {0,1,..., M — 1} and that the distortion
measure is a difference distortion measure, namely d(x,y) = d(x — y). And for
aesthetics, assume that d(-) > 0, and d(a) = 0 iff @ = 0. Also, the additions and
subtractions are modulo M. In some cases, we can add symmetric condition
d(—a) = d(a), but we won’t be needing it in the following. Define the mazimum
entropy function ®4 : RT — RT:

®4(D) £ H(V 2.25
(D) = max H(V), (2.25)
where the maximization is over all random variables V' taking values in {0, ..., M —

1}. Denote the achiever of the maximum entropy function ®4(D) by Vp. Note
that the strict concavity of the entropy function guarantees that the achiever is
unique (why?).
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Exercise 2.5.1. (a) For the binary case, X = Y = {0,1}, and hamming

distortion

0 ifa=0
d(a) =
1 otherwise
show that
h(D) f0<D<1/2

@d(D):{1 ifD>1/2.

(b) Generalize (a) to M > 2 and hamming distortion.
Exercise 2.5.2. Prove the following properties of ®4(-):

(a) ©4(0) =0, ®4(D) = log(M) if D > (1/M) 111" d(i).

(b) Monotonic increasing.

(c) Concave.

(d) Strictly increasing in [0, (1/M) ZM Ld(i)].

(2.26)

(2.27)

(e) In the interval |0, (1/M) ZM Yd(i )} the mazimum is attained uniquely

by Vp with

1
Pr(Vp =v) = T ——. OB

Zf}/tol e—Bd(v")

where [ is the value such that Ed(Vp) =

(2.28)

Hint: Use Kullback-Leibler divergence function and the fact it is non-

negative and zero if and only if the two distributions are equal.

Assume now some Py xn» such that Ed(X",Y™) < D. Letting X"
denote the n-tuple (X; —Yi,..., X, = Y3,), Pyn|xn

I(XTL; Y’n) — H( ) (XTL|Y7I)
= H(X") ~ H(X" = Y"[¥")
)~ H(X" —Y")

—_yn
(2.29)

(2.30)
(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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where (2.34) follows from concavity of ®4(-) and (2.35) from monotonicity of
®,(-) and the fact that Ed(X™,Y™) is upperbounded by D. Hence,

1
R{O(D) > ~H(X") = 4(D) , (2.36)
which is known as the Shannon Lower Bound for R%I)(D). Taking the limit
n — 00 gives
R(D) > H(X) = ®a(D) , (2.37)

which is the Shannon Lower Bound on R(D). The following exercise explores
the condition for the Shannon Lower bound to hold with equality.

Exercise 2.5.3. Assuming 0 < D < (1/M) > d(i), show that

(a) Equality holds in Rg)(D) > (1/n)H(X™) — ®4(D) if and only if there
exists Y™ such that

N; iid. ~Vp (2.38)
! (2.39)
Yt —@— X" (2.40)

and in this case (X", Y™) achieves the minimum in the definition of
()
Ry’ (D).

(b) (X™,Y™) uniquely achieve RY)(D) if the Toeplitz matriz 11 induced by

(Pr(Vp =0),...,Pr(Vp = M — 1)) is invertible.

(¢) Conclude that, under the same condition on 11, equality in R(D) > H(X)—
O ,4(D) holds if and only if there exists a stationary process Y such that

N;iid. ~Vp (2.41)
! (2.42)
Y—P —X (2.43)

2.6 Geometric Interpretation of the Shannon Lower
Bound

The distortion “ball” of radius D is denoted by

B,(y",D) & {2" : d(z™ — y™) < D} (2.44)
={a": %Zd(% —yi) < D} (2.45)
i=1

={z":2" —y" € B,(D)}, (2.46)
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Figure 2.3: Typical set for X" and distortion ball B, (y", D)

for B, (D) = {e, : (1/n)>."_, d(e;) < D}. Hence,
‘Bn(yn’ D)| _ |Bn(D)| — 9N MAXg4(V)<D H(\V) _ 2n¢'d(D) ) (247)

Since the union of the distance D ball for all the codewords should at least cover
an exponentially non-negligible fraction of the typical set, we have

The number of codewords > 2"HX) /9n®a(D) (2.48)
which implies that
R(D) > H(X) — 94(D) . (2.49)
Exercise 2.6.1. Assume X is ergodic and |X| < oo.

(a) Let B,, C X™ be a sequence of sets with

1
limsup — log |B,| < H(X) . (2.50)
n—oo N
Show that Pr(X™ € B, i.0.) =0 .
Hint: Show that Pr(X™ € B,,) is exponentially small, and apply the Borel-
Cantelli lemma.

(b) Assuming 0 < D < (1/M) Zf‘i;l d(i), show that any sequence of schemes
of fized rate R < H(X) — ®4(D) must satisfy

liminf d(X™,Y™) > D with probability 1. (2.51)
n—r oo
Hint: Use the geometric argument above to conclude that the set of source

sequences covered to within distortion D — € is exponentially smaller in
size than 21X | and invoke part (a).
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2.7 A Bit More on the Shannon Lower Bound

Assume distortion measure d(-) and the maximum entropy function ®4(D) =
maxgq(vy<p H (V). The Shannon Lower Bound (SLB) states that, for any er-
godic process X:

R(D) > H(X) — ®4(D). (2.52)

We have seen this from a geometric argument. The equality holds if and only
if there exists Y, such that the relationship in Fig. 2.4 is satisfied, where N; is
1.7.d. additive noise with distribution Vp. In that case, the infimum in

R(D) =inf {I(X;Y) : (X,Y) joint stationary and Ed(Xo,Yy) > D} (2.53)

is achieved by the process pair described in Figure 2.4. But it does not imply
that the reconstruction sequence associated with a code that operates close to
the rate distortion curve resembles the process Y that satisfies the relationship
in Figure 2.4. To see this clearly, consider the case where X is a memoryless
binary process, X; is i.i.d. ~ Ber(p). As we know well form EE376A, R(D) =
h(p) — h(D) = H(X) — ®4(D), where D < p < 1/2. ILe., the SLB is satisfied
with equality for this source. Indeed, the i.i.d. process Y in Figure 2.5 yields X
when corrupted by a BSC(D), which is equivalent to modulo 2 addition with the
binary random variable achieving the maximum in the definition of ®4(D). But
if we take a code such that Y is i.i.d., then we would have 1/n H(Y") = H(Y;),
whereas for a good code 1/n H(Y™) = I(X;; Y;)!

Figure 2.4: Signal model that achieves equality in (2.52).

Figure 2.5: Signal model for a binary memoryless source achieving R(D).

A non-trivial example for a case where the SLB is tight is the following. Let
X be binary symmetric Markov source, illustrated in Figure 2.6. The SLB gives
R(D) > h(p)—h(D), where D < p < 1/2. As it turns out, there exists Y satisfy-

ing the relationship in Figure 2.4 if and only if D < D* & (1 — /1 - (ffp)Q) /2,

but Y is not of simple form. See [3].

Figure 2.6: Binary symmetric Markov source.



Chapter 3

Universal Lossy
Compression

3.1 Yang-Kieffer (Y-K) Codes

Let us first look at a universal lossy compression scheme due to Yang and Kief-
fer [12]. The codebook is generated by selecting codewords that have Lempel-Ziv
(LZ) description length less than nR, i.e., B, = {y™ : lz(y") < nR}. The en-
coding involves two steps. In the first step, the source sequence X" is mapped
to the reconstruction sequence Y™ using minimum distortion criterion:

Y™ = ¢, (X™) =arg min d(X",y"). (3.1)
y"€Bn

In the second step, Y is mapped to its LZ description:
Cy (¢ (X™)) = LZ description of ¢, (X™). (3.2)

Note that the codebook is independent not only of any source statistics, but
also of the distortion measure! Encoding, of course, depends on the particular
distortion criterion used [cf. (3.1)]. By construction, the scheme described has
rate < R, so, on any source, the distortion it achieves satisfies

liminf Ed(X",Y™) > Dx(R). (3.3)

n—oQ

On the other hand, the following result shows that it universally attains this
lower bound.

Theorem 3.1.1 (Yang&Kieffer [12]). For all stationary ergodic source X:
lim Ed(X",Y") = Dx(R). (3.4)

n—oo

We will prove universality of the fixed-slope version of the Yang-Kieffer
scheme, to which we now turn.

17
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3.2 Fixed Slope Version of Y-K Codes

In the fixed slope version of Y-K (YKFS) codes, we select the reconstruction
sequence according to

. 1
X"(2") = argmin <nle(y") +a-d(z", y")) : (3.5)

>

The encoder then describes X™ using its LZ description. Denote lykrs(z™)
le (Xn(.’lf”)) .

Theorem 3.2.1. For all stationary ergodic process X:

E EIYKFS(X") +a-dX" X" (X”))} sy gg%[fz(p) + aD]. (3.6)

Proof Fix an arbitrary distortion level, an arbitrary § > 0, and recall

R(D) = inf {H(Y) : (X,Y) joint stationary and Ed(X,,Yy) > D}.  (3.7)
Let Y? be a é-achiever, i.e., H(Y?®) < R(D) + 4, where (X,Y?) are joint sta-
tionary and Ed(X,, YY) < D. For any k:

1 .
E [nlYKFS(Xn) —|— Q- d(Xn, X"):|

1
— B |min Liua(s) + - (X" (3.
1
<E EZLZ(Y”"S) +a-d(X", Y”"S)} (3.9)
<E[H (Y70 )) +e®] + 0 Ed(Xo,Y7) (3.10)
<HYJY ') +e® +a-D (3.11)

where (3.10) is due to Theorem ??, and (3.11) is due to part (b) of Exercise ?7.
This implies that

1 .

limsup E {ZYKFS(X") +a- d(X”,X”)] <HYSIY ) +a-D. (312
n—o00 n

Due to the arbitrariness of k, we have

1 N
limsupIE |:ZYKFS(Xn) + « - d(Xn,Xn):| < H(Yé) +a-D (313)
n

n—r oo

<R(D)+6+a-D.  (3.14)

Since equation (3.14) holds for arbitrary § > 0, we have

1 .
limsup E [nlYKFS(Xn) + o d(Xn, Xn):| < R(D) +a-D (315)

n—oo
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Finally, because of arbitrariness of D,

1 N
limsup E [ZYKFS(X") +a- d(X",X")} <min[R(D)+ «a- D] (3.16)
n—o00 n D>0

which completes the proof when combined with the obvious

lim inf [;ZYKFS(X") +a-dX", X")} > min[R(D) + o - D] (3.17)

n— 00 D>0

O

Remark 3.2.2. (a) Y? is introduced since the infimum of (3.7) is not neces-
sarily achieved (and, in fact, can be shown to be achieved only for trivial
processes and/or distortion measures and levels).

(b) This scheme is not practical since (3.5) is hard to compute. Practicality
of schemes, and practical schemes, will be discussed in the next section.

3.3 “Practical” Universal Lossy Compression

3.3.1 An Open Question that’s Not Quite Open
We start by posing the following question:

Question 3.3.1. Given a function f(n) satisfying lim,,_, f(n) = oo, and given
a rate R, does there exist a (sequence) of scheme(s) with complexity O(nf(n))
and rate less than or equal to R that satisfies

lim Ed(X",Y") = D(X,R) (3.18)

n—oo
for every stationary ergodic source X ¢

Although this question is widely thought to be open, we answer it in the
affirmative by constructing such a scheme. See [5] for more on this.

3.3.2 Constructing a “Practical” Universal Lossy Com-
pressor

Let us divide a block of n symbols from X into length-k sub-blocks:
Xy, Xiy X1y oo Xoky ooy Xnmkim1y -+, X« (3.19)
k k k

Let Ny (R) represent the set of all rate-R codebooks for blocklength k. The
size of this set is then given by

k
i = () (3.20)
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where we denote the output alphabet by ).
The encoding scheme we suggest is a three-step algorithm.

(a) Find the codebook C' € Ny (R) that minimizes the distortion to X™ when
applied separately to each of the k-blocks.

(b) Describe C to the decoder.

(¢) Use C on each of the sub-blocks and send the codeword indices to the
decoder.

3.3.3 Evaluating the Performance

The number of bits expended in step two is log(|Ny(R)|). In step three, kR bits
are required for each of the n/k subblocks. This results in a rate of

1
Rscheme = ﬁ log(|Nk(R)|) + R. (321)

The number of operations is dominated by step one. For every candidate
codebook C in Ny (R), each of the n/k subblocks must be encoded in order to
determine the distortion. Each of these encodings requires a comparison to 2~
codewords. Therefore, the number of operations scales as

ops < [N (R)] %sz (3.22)

and the number of operations per source symbol scales as

ops 1
22 < S IN(B) 2, (3.23)

The right hand side of this equation is a function only of k, and so we denote it
a(k). Similarly, it can be shown that size of memory required per source symbol
is bounded by a function b(k).

The sub-block length k£ must now be chosen as a function of the blocklength
n, similarly as we did for the DUDFE. We choose k = k,, such that the following
conditions are satisfied:

(a) k,, — oo. This is required to approach the rate-distortion function.

(b) Llog(|N,(R)]) — 0. This ensures that the overhead in describing the
codebook is asymptotically negligible.

(c¢) max(a(ky),b(k,)) = o(f(n)). This constrains the complexity. Note that
we have full control over the rate of growth of a(k,) and b(k,,), just as we
have full control over the rate of growth of |V, (R)|.

For such an encoding scheme:

(a) The complexity per source symbol is o(f(n)).
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(b) For any stationary ergodic source X,

lim Ed(X",Y") = D(X,R). (3.24)

n—oo

Exercise 3.3.2. Prove the second of the above claims.

3.3.4 Interpretation

The above analysis indicates that the encoding scheme we have constructed
achieves the rate-distortion function asymptotically, has a complexity in n ar-
bitrarily close to linear, and works for any stationary ergodic source. However,
there are obvious flaws with this construction. Not only is the convergence to
R(D) slow, but the algorithm in question is severely lacking in elegance. Com-
pare, for instance, with the elegance of Lempel-Ziv, which seems to compensate
for its poor rates of convergence.

The moral of the story? Low-complexity (in blocklength), universal, R(D)-
achieving lossy codes are not the holy grail of rate-distortion theory. Rate of
convergence and “cuteness” are also important considerations.

To emphasize ease of implementation, we pose the following (open) question.

Question 3.3.3. Suppose the source is drawn from a known memoryless dis-
tribution, and suppose that an arbitrarily slow rate of convergence is permissi-
ble. Under these circumstances, does(do) there exist a (sequence of) scheme(s)
achieving R(D) with linear complexity?



22

CHAPTER 3. UNIVERSAL LOSSY COMPRESSION



Chapter 4

Universal Compression via

MCMC

4.1 Lossy Compression via MCMC

Consider the encoder that, for a given input sequence z", assigns the LZ de-
scription of X™ where

X"(a") = argmin [Hi(y") + ad(a",y")] (4.1)

Then the number of bits expended is given by I, Z(X .

After computing this reconstruction, the encoder returns its LZ description.
The decoder is simply the LZ decoder. For this scheme, the number of bits
expended is the length of the LZ description, ZLZ(X"). This scheme differs
from the Yang-Kieffer code in that the Yang-Kieffer code optimizes directly for
l1,z in the formulation of X. The following exercise identifies the k£ that must
be chosen so that the resulting scheme is universal.

Exercise 4.1.1. Identify k = k,, such that

lim E Elw(f(”) + ad(X",)A(")} = min [R(D) + aD] (4.2)

n— 00 D>0

for all stationary ergodic sources X.
Hint: by Ziv’s inequality, for all k, there exists some positive number 67(1’6) inde-
pendent of the source sequence, such that

1
| 2102) — Hul)| < (1.3
Thus,
. 1
lim sup max [ZLZ(y”) - Hk(y”)} <0. (4.4)
n—oo Y" n

23
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Verify that the previous equation holds when we replace k with k,, = o(logn).

Evaluating X™ from (4.1) is, however, computationally hard. We try the
following approach: Define an energy function:

U(y") = Hi(y") + ad(z",y") (4.5)

Then the Boltzmann distribution on the sequences y™ is given by

Po(y") = Zlﬁ exp (—BT(™) (4.6)

where Zg =} . exp (—=8¥(y")) is the normalization factor.
Exercise 4.1.2. Show that

Jlim P <\II(Y”) = rrylip@(y")) =1 (4.7)

We can now attempt to sample from the distribution Pg using the MCMC
algorithm to approximate the optimization (4.1). A Markov Chain Monte Carlo
(MCMC) method for sampling from the distribution Px» can be described as
follows:

e Choose an arbitrary starting point z".

e Choose i ~ Unif{1,2,...n} and replace z; by a sample randomly drawn
according to Py, zni-

e Iterate the above step.

Exercise 4.1.3. Assuming a benign condition Py, n\i(v;) > 0,Y2",4, and de-

noting by X™9) the sequence after j iterations of the MCMC algorithm described
above, show that

im PXn,(j) = PXTL (48)
j—o0

The condition on Py, xn\: above can be relaxed. This algorithm is commonly
referred to as “Heat-bath” algorithm. Refer to [8] for more details.

Evidently, to apply the MCMC procedure for sampling from the Boltzmann
distribution, we need to compute
Zgle—ﬁllf(y”)

Zy Zgle—ﬁ‘l/(y“l,ywhl) ’

Py y v (yily™) = (4.9)

The Boltzmann distribution is often used in physics since the energy function
defined there is commonly separable into a sum of (potential) functions, each
involving only a small collection of y;s (whose indices are neighbors on a grid
or a graph). Then, the above conditional distribution is easy to compute since
it involves only the variables neighboring the ith one. In our case, the energy
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function has a non-separable term Hy(y™), which cannot be decomposed into a
sum of functions involving local terms. However, as we shall show below, it is
still easy to calculate.

We introduce some notation. Define

ce(y™ uM)u] = |{k+1<i<n: yi b =k gy = ull. (4.10)
We then have
1

i) = —— 3" lexy™ wb)]], Hlenl", o)), (411)

where H(v) = H(W), and Py = IR
1
Consider a sequence y1,Y2, ..., Yi—ks--->Yi—1,Yi, Yi+1,-- .- We change y; to

y. Evidently, by doing this, we can affect a number of contexts:
o {Yiky..,yi—1}: we can affect cx(y", {Yi—ky---sYi—1})-
® {Yi—k+1,---,¥i} : wecan affect cx (Y™, {yi—k+1,-- -, ¥i}) and e (¥, {Yi—k+1,- - -, Y})-

o {yi, .., Yirk—1} : we can affect ¢ (v™, {ys, - - - Yirk—11) and cx(v™, {y, - - -, Yirk—-11})-
No more than (2k + 1) contexts can be affected by changing one y;. Thus, it is
linear in k (and independent of n) to evaluate the denominator W(y'~*,y,y7 ;)
in (4.9), given the numerator ¥(y"). Hence, for ecach iteration of MCMC, the
evaluation of Pg y,yn\:i(+) is linear in k.

Now let X™AL(z") denote the result of MCMC for target distribution Pg
after [ iterations with starting point ™. Let X™P denote a perfect sample from
Pg. Consider:

lim lim lim E [IZLZ(XWJ(X")) +ad(X”,)A("*ﬁ’l)} (4.12)

n—00 f—o00 -0 n

= lim lim E [11LZ(XW’(X"))+ad(X”,X"ﬁ)] (4.13)
n—00 f—00 n

= lim E [1ILZ(X"(X")) +ad(X",X”)] (4.14)
n—oo n

= mDin(R(D) +aD). (4.15)

where (4.13) is due to Exercise 4.1.3, and (4.14) is due to Exercise 4.1.2, and
(4.15) is because of Exercise 4.1.1.
One can also show [6] that if 8 = (; is constant, that is, letting 8 increase
along with [ sufficiently slowly, then
lim lim B lzLZ()A(’”LﬁlJ(X")) + ad(X™, X™Ph | = min(R(D) + aD).
n—00 [—oco n D
(4.16)

This is known as “simulated annealing”.
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4.2 MCMC for Continuous Sources

The scheme of the previous section, as is its exhaustive origin, is suitable for a
finite reconstruction alphabet. To see how disastrously it might perform when
the size of the alphabet is not small relative to the size of the data, consider the
following:

Example 4.2.1. For y" such that i # j implies y; # y;, we have Ho(y") =
logn, and Hi(y™) = 0.

The moral of this example is that the reconstruction alphabet needs to be
small relative to the size of the data. This, however, does not limit the appli-
cability of the approach as severely as one might initially suspect. There are
many continuous sources whose optimal reconstruction alphabet is finite and,
in fact, small. For example, in lossy compression of a memoryless source under
squared error loss, we have the following [10]:

Example 4.2.2. Consider a memoryless source X and squared error distor-
tion d(z™,y™) = ||a" — y"||§. The Shannon Lower Bound (SLB) for this case
assumes the form

R(D) > h(X) - %log(Qﬂ'eD) (4.17)

where h denotes differential entropy, and % log(2meD) is the mazimum differen-
tial entropy function with respect to a squared error distortion constraint. Equal-
ity is achieved iff there exists Y such that X =Y + N, where N ~ N(0,D) is
independent of Y. When the SLB is not tight, the Y that achieves the minimum
in mingx_v)2)<p [(X;Y) is discrete and finite. See Figure 4.1

Thus, for sources that do not satisfy the SLB with equality, which are most
sources, the reconstruction alphabet is finite and, at high distortion, can be very
small. The MCMC approach is applicable to such sources.

4.3 A Brief Recap of Universal Lossy Compres-
sion

The goal of universal lossy compression is to find Y™ such that the energy
function

U(y") = Hi(y") + ad(z",y") (4.18)

is minimized. We discussed, in particular, the MCMC approach from sampling
a Boltzmann distribution. For each iteration, we consider the computation
complexity in updating the energy function, i.e.,

U(y") — Uy uih), (4.19)



4.3. A BRIEF RECAP OF UNIVERSAL LOSSY COMPRESSION 27
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Figure 4.1: Discreteness of Y.

or equivalently,

Hy(y") — Hip(y" 'y, ), (4.20)

is linear in k£ and independent of n. Thus, to compute the Boltzmann distribu-
tions for all iterations, the cost is O(kl), where [ is the number of iteration.

Why do we use the energy function instead of the fixed-slope Yang-Kieffer
code? The YK code replaces the H(y™) term in the energy function with the
length of the LZ description of the reconstruction, I;z(y™). As changing one
symbol in the reconstruction sequence could produce a global change in its LZ
description, the complexity of calculating the YK cost function is O(n). Over
all iterations, the cost is O(n?). Thus it is much more economical to use the
energy function.

A different approach, which approximates the exhaustive approach given ¥,
is given in [7].
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Chapter 5

The Empirical Distribution
of Rate-Distortion Codes

5.1 The Empirical Distribution of Rate-Distortion
Codes

For a comprehensive discussion on this topic, see [11]. We first specify the setting
for the problem we will discuss. We assume that the source and reconstruction
alphabets, X and ), are finite. For ease of notation we define

I(Pxy)=I(Px; Pyix) = I(X;Y) (5.1)
I(Pxr yr) =I(Pxr; Pyrxr) = I(X";YF) (5.2)
and without loss of generality, assume that d(i,7) > 0 for all i, j.

Theorem 5.1.1. Let X be a stationary random process, and let Y™ = Y™ (X™)
be the (fized block length) reconstruction under some scheme at rate < R. Let
J ~ Unif(1,...,n), independent of X. Then:

(a) 1(X;,Y;) < R+ H(X1) — LH(X™).
Notes: o For a memoryless source, I(X;,Y;) < R.

o Px,yv,(,y) =31 Pr()Px, v, (2,y) = 5 310, Px,vi(@,y).
e For R large, we can take Y = X.
(b) Append an arbitrary k — 1 tuple to Y™, i.e. [Y1,..o, Yo, Unt1s s Ynth—1]-
LI Y940 < a0 Res LX) - LH(XO.
Note: PX}Hk—l’YI;HK—l =15, PX;'Jrk—l’YL_iJrk-—l.

Proof

29
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(a) We have
nR> H(Y") (5.3)
> I(X™Y™) (5.4)
= H(X") - HX"|Y™) (5.5)
_ H(X") - nH(X0) + 3 [HX) - HEXLY] (56)
> H(X") = nH(X,) + ) [H(X;) - H(X,[Y;)] (5.7)
i=1
> H(X") —nH(X1) + Z I(X:3Y7) (5.8)
ZH(X")—HH(X1)+"ZH:%I(X1';Y¢) (5.9)
> H(X™) —nH(X1) + nf(_PXJ;PYJ‘XJ), (5.10)

where (5.7) follows since removing conditioning increases entropy, and
(5.10) follows since Px, = Px, for all 1 <i <mn, and

1 n
Py, |x, :EZPYiIX'H (5.11)
=1

i=1n

thus via the convexity of I(X;Y) in Py |x, > ;. L1(Xy;Y;) > I(Px,; Py, |x,)

(b) We provide an outline for this proof. For all 0 < j < k — 1, define
Sj = {1 < 1 <n: ) :j mod k} Let P;g;yk = ‘517‘ ZiGSj PXii+k—17YL_i+k—1.
Using part (a), with the following association:

n —s |9 (5.12)
X;Y; — XHhot ikl (5.13)
R — Cgi (5.14)
Now verify that
I(PY) ) < ﬁ onR o+ H(X") - SH(X"). (5.15)

Then, via the convexity of mutual information,

i i+ H(X") - %H(X”). (5.16)

I(PX,J]-Hc—l 5 PYj]+k—1|X:]I+k—l) S
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5.2 The Empirical Distribution of Good Codes

Definition 5.2.1. Let X be ergodic. The code sequence {Y"(-)}, -, and rates
{Rn},>, is good for X and rate R if =

limsup R, < R, (5.17)
n—oo
limsupE[d(X",Y"(X")] < D(X, R). (5.18)

n—oo

Exercise 5.2.2. Show that for R in the range where D(X, R) is strictly de-
creasing, the limsup in the definition can be replaced by lim.

Theorem 5.2.3 (Empirical Distribution Induced by A Good Code). Let {Y™}
be a good code sequence for a stationary ergodic source X at distortion D. Let
Jn ~ Unif(1,...,n), independent of X. Fix some k. Assume the following is
true:

(a) R\"(X,D) = R(D)+ LH(X*) - H(X)

(b) Rg) (X, D) is achieved uniquely by (X*,Y*) whose joint distribution ah-
cieves R;CI) (X, D).

Then, for fized k, as n goes to infinity,
(Xj:*’“*l,yjy““l) noge (X’“,f/k) in distribution. (5.19)

Notes that assumption (a) holds when X is memoryless or a source that
satisfies SLB with equality, i.e.:

R(D) = %H(Xk) — &(D) (5.20)
= (H(X) — ®(D)) + %H(Xk) — H(X) (5.21)
= R(D) + lH(X’“) — H(X). (5.22)

k

Also, for a memoryless source where the components of Y* are i.i.d., we have

LH(Y] ) "2F LH(VY) = H(), (5.23)
while
%H(Y") "2 1(X1: V7)) = RY(D) = R(D). (5.24)
The proof of Theorem 5.2.3 is as follows. First, note that
lim Ed(X =t vty = lim Ed(X",Y") = D. (5.25)

where we leave the proof of (5.25) as an exercise.
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Exercise 5.2.4. Prove that

lim Ed(X ;%1 y/"*71) = lim Ed(X",Y") = D. (5.26)

n— oo n— oo

Hint: For k = 1, it is easy to show that the equality holds for any n, from
our per-symbol distortion measure. Next for k > 1, show that for any n,

Ed(X 7R vty s within £ 82124, from BA(X™, V™) where dyas =
maXgex,ycy d(x, y)

On the other hand, from Theorem 5.1.1 (b), we know

n 1 1
R, + —H(X") — ZH(X™), 5.27
< Ry H(XM) - —H(X™),  (527)

1 Jn+k— Jn+k—
EI(XJ”+ 1;YJn - 1) <

where R, is a rate of the code for the source sequence of block length n, X™.
Then, by the “goodness” of the code,

1 1
lim sup %I(Xj:%‘l; Yt = R(D) + EH(X’C) — H(X) (5.28)

n—oo
= R(D), (5.29)

where (5.29) is from Assumption (a). In the meantime, from the definition of
the informational rate-distortion function, we know

1
ST Lyl > RO (Bd(X gt vy, (5.30)

which in turn, implies that

1
limjinf - 7(X 7 V) > Jim inf R (Ba(xyh—t vy hmlyy (531

n—oo n—oo

= r(D), (5.32)

where the last equality is from (5.25) combined with the continuity of the rate-

distortion function Rg)(D). Then, by combining (5.29) and (5.32), we can
conclude that

1
lim — (X7 1y = RU(D). (5.33)

n—oo
Then, the rest of the proof will be complete with the following Lemma.

Lemma 5.2.5. Let Py |x uniquely attain the minimum in

D) = i I(X:Y 5.34
f(D) Py‘x:E%l(l}I},Y)gD( ;Y) (5.34)

and further let {P}(J&} satisfy

o I(Px; PI}y) "= (D)
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° B, ,m dX,Y)"=°D,

Px YI|X
then Px P} "= Px Py|x
Exercise 5.2.6. Prove Lemma 5.2.5

Note that the lemma proves Theorem 5.2.3 by (5.25), (5.33), and the follow-
ing associations:

o XF Yk —— XY

n
° PX:;:LL+I€—1,P¥}ZL+I€71 — P)((,g/

e R — f(D)

Denote

empl XY ") (2%,y") =

oS i< — ke X = 2R VT =y,
(5.35)

the k-th order empirical distribution of (X™,Y™). Then under the same as-
sumptions as Theorem 5.2.3,

1QE,,[ X", Y] = Py gl "0 wop.l (5.36)

See [11] for a proof.

5.3 Applications to Denoising

Assume the following setup:
e Noisefree source: X stationary, ergodic
e Additive white noise: N; ~ N, i.i.d and independent of X

e Noisy source: Z, Z; = X; &y N;, where we assume that the components
of X, N, and Z all take values in {0,1,...,M —1}

Exercise 5.3.1. Show that Z is ergodic

Further assume that all the components of Py are positive and that the
Toeplitz matrix it induces is invertible.

Exercise 5.3.2. Show that maxy{H(V) : Ed™)(V) < H(N)} is uniquely
attained by N, where dN)(a) = 1og(ﬁ(a)) and the mazimization is over all
random variables V' taking values in {0, 1, ..., M-1}

Theorem 5.3.3. Under d'N), we have Rg)(Z H(N))= tH(Z*)—H(N), and
is achieved uniquely by (Z*, X*).
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Proof Recall the setting of the Shannon lower bound in Section 2.5. Exercise
2.5.2 has shown us that N, the noise, is the unique achiever (in distribution) of
#4(D), when d is the distortion measure d¥) and D = H(N). Theorem 5.3.3
now follows directly from parts (a) and (b) in Exercise 2.5.3, with (Z*, X*) here
playing the role of (X*,Y*) in that exercise. O

Thus, the combination of Theorem 5.2.3 with Theorem 5.3.3 implies that
by using a good rate-distortion code, our reconstruction is, in effect, a ‘sample
from the posterior’. More precisely, for any fixed k, the kth-order distribution
of the noisy and reconstruction sequences is converging to that of the noisy and
noise-free sequences.
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